钟春平; 钟同德
Zhong Chunping; Zhong Tongde
摘要:
A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π*E of a vector bundle E over M ([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined,
first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and h-harmonic
horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
中图分类号: