[1] Böröczky K J, Henk M. Cone-volume measure of general centered convex bodies. Adv Math, 2016, 286: 703-721 [2] Böröczky K J, Lutwak E, Yang D, et al.The log-Brunn-Minkowski inequality. Adv Math, 2012, 231: 1974-1997 [3] Böröczky K J, Lutwak E, Yang D, et al. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26: 831-852 [4] Chen S B, Li Q R, Zhu G X. The logarithmic Minkowski problem for non-symmetric measures. Trans Amer Math Soc, 2019, 371: 2623-2641 [5] Colesanti A, Livshyts G V, Marsiglietti A. On the stability of Brunn-Minkowski type inequalities. J Funct Anal, 2017, 273: 1120-1139 [6] Colesanti A, Livshyts G V.A note on the quantitative local version of the log-Brunn-Minkowski inequality//Aron R, Gutierrez G, Martin M, et al. The Mathematical Legacy of Victor Lomonosov: Operator Theory. Berlin: De Gruyter, 2020: 85-98 [7] Eskenazis A, Moschidis G. The dimensional Brunn-Minkowski inequality in Gauss space. J Funct Anal, 2021, 280: 108914 [8] Firey W J. p-Means of convex bodies. Math Scand, 1962, 10: 17-24 [9] Gage M. Positive centers and the Bonnesen inequality. Proc Amer Math Soc, 1990, 110: 1041-1048 [10] Gage M, Li Y. Evolving plane curves by curvature in relative geometries II. Duke Math J, 1994, 75: 79-98 [11] Gardner R J. The Brunn-Minkowski inequality. Bull Amer Math Soc, 2002, 39: 355-405 [12] Gardner R J, Hug D, Weil W. Operations between sets in geometry. J Eur Math Soc, 2013, 15: 2297-2352 [13] Gruber P M.Convex and Discrete Geometry. Berlin: Springer, 2007 [14] Henk M, Linke E. Cone-volume measures of polytopes. Adv Math, 2014, 253: 50-62 [15] He B, Leng G, Li K. Projection problems for symmetric polytopes. Adv Math, 2006, 207: 73-90 [16] Henk M, Pollehn H. On the log-Minkowski inequality for simplices and parallelepipeds. Acta Math Hungar, 2018, 155: 141-157 [17] Henk M, Schürman A, Wills J M. Ehrhart polynomials and successive minima. Math, 2005, 52: 1-16 [18] Huang P L, Pan S L, Yang Y L. Positive center sets of convex curves. Discrete Comput Geom, 2015, 54: 728-740 [19] Ji L W, Yang Z H. The discrete Orlicz-Minkowski problem for p-capacity. Acta Math Sci, 2022, 42B(4): 1403-1413 [20] Jin H L. The log-Minkowski measure of asymmetry for convex bodies. Geom Dedicata, 2018, 196: 27-34 [21] Kaiser M J. The ε-positive center figure. Appl Math Lett, 1996, 9: 67-70 [22] Kolesnikov A V, Milman E. Local Lp-Brunn-Minkowski inequalities for p<1. Mem Amer Math Soc, 2022, 277(1360): 1-78 [23] Lutwak E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131-150 [24] Lutwak E. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv Math, 1996, 118: 244-294 [25] Ma L. A new proof of the log-Brunn-Minkowski inequality. Geom Dedicata, 2015, 177: 75-82 [26] Pan S L, Yang Y L, Huang P L. The ε-positive center set and its applications. C R Acad Sci Paris Ser I, 2016, 354: 195-200 [27] Putterman E. Equivalence of the local and global versions of the Lp-Brunn-Minkowski inequality. J Funct Anal, 2021, 280: 108956 [28] Rotem L.A letter: The log-Brunn-Minkowski inequality for complex bodies. arXiv:1412.5321 [29] Roysdon M, Xing S. On Lp-Brunn-Minkowski type and Lp-isoperimetric type inequalities for measures. Trans Am Math Soc, 2021, 374: 5003-5036 [30] Saroglou C. Remarks on the conjectured log-Brunn-Minkowski inequality. Geom Dedicata, 2015, 177: 353-365 [31] Saroglou C. More on logarithmic sums of convex bodies. Mathematika, 2016, 62: 818-841 [32] Schneider R.Convex Bodies: The Brunn-Minkowski Theory. Second Expanded Edition. Encyclopedia of Mathematics and its Applications 151. Cambridge: Cambridge University Press, 2014 [33] Stancu A. The discrete planar L0-Minkowski problem. Adv Math, 2002, 167: 160-174 [34] Stancu A. On the number of solutions to the discrete two dimensional L0-Minkowski problem. Adv Math, 2003, 180: 290-323 [35] Stancu A. The logarithmic Minkowski inequality for non-symmetric convex bodies. Adv Appl Math, 2016, 73: 43-58 [36] Thompson A C. Minkowski Geometry.Cambridge: Cambridge University Press, 1996 [37] Xi D M, Leng G S. Dar's conjecture and the log-Brunn-Minkowski inequality. J Differential Geom, 2016, 103: 145-189 [38] Xiong G. Extremum problems for the cone volume functional for convex ploytopes. Adv Math, 2010, 225: 3214-3228 [39] Yang J, Ye D P, Zhu B C. On the Lp Brunn-Minkowski theory and the Lp Minkowski problem for C-coconvex sets. Int Math Res Not, 2023, 2023: 6252-6290 [40] Yang Y L. Nonsymmetric extension of the Green-Osher inequality. Geom Dedicata, 2019, 203: 155-161 [41] Yang Y L, Zhang D Y. The log-Brunn-Minkowski inequality in $\mathbb{R}^3$. Proc Amer Math Soc, 2019, 147: 4465-4475 [42] Zhu G X. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 |