[1] Aleksandrov A D. On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat Sb (NS), 1938, 3:27-46 [2] Aleksandrov A D. On the surface area measure of convex bodies. Mat Sb (NS), 1939, 6:167-174 [3] Andrews B. Gauss curvature flow:the fate of the rolling stones. Invent Math, 1999, 138:151-161 [4] Akman M, Gong J, Hineman J, Lewis J, Vogel A. The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. arXiv:1709.00447, Mem Amer Math Soc, to appear [5] Belloni M, Kawohl B. A direct uniqueness proof for equations involving the p-Laplace operator. Manuscr Math, 2002, 109:229-231 [6] Böröczky K J, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26:831-852 [7] Caffarelli L A. Interior W2,p estimates for solutions of the Monge-Ampére equation. Ann of Math, 1990, 131:135-150 [8] Caffarelli L, Jerison D, Lieb E. On the case of equality in the Brunn-Minkowski inequality for capacity. Adv Math, 1996, 117:193-207 [9] Cheng S Y, Yau S T. On the regularity of the solution of the n-dimensional Minkowski problem. Comm Pure Appl Math, 1976, 29:495-516 [10] Chou K, Wang X. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv Math, 2006, 205:33-83 [11] Colesanti A, Cuoghi P, Salani P. Brunn-Minkowski inequalities for two functionals involving the p-Laplace operator. Applicable Analysis, 2006, 85(1-3):45-66 [12] Colesanti A, Fimiani M. The Minkowski problem for torsional rigidity. Indiana Univ Math J, 2010, 59(3):1013-1039 [13] Colesanti A, Nyström K, Salani P, Xiao J, Yang D, Zhang G. The Hadamard variational formula and the Minkowski problem for p-capacity. Adv Math, 2015, 285:1511-1588 [14] Fenchel W, Jessen B. Mengenfunktionen und konvexe Körper. Danske Vid Selsk Mat-Fys Medd, 1938, 16:1-31 [15] Firey W. p-means of convex bodies. Math Scand, 1962, 10:17-24 [16] Gruber P. Convex and Discrete Geometry. Berlin:Springer, 2007 [17] Hu H, Zhou S. Brunn-Minkowski inequality for variational functional involving the p-Laplacian operator. Acta Math Sci, 2009, 29B(5):1143-1154 [18] Huang Y, Song C, Xu L. Hadamard variational formulas for p-torsion and p-eigenvalue with applications, Geometriae Dedicata. 2018, 197(1):61-76 [19] Jerison D. A Minkowski problem for electrostatic capacity. Acta Math, 1996, 176:1-47 [20] Lewy H. On differential geometry in the large, I. Minkowski's problem. Trans Amer Math Soc, 1938, 43:258-270 [21] Lu X B, Xiong G. The Lp Minkowski problem for the electrostatic p-capacity for p ≥ n. Indiana Univ Math J, 2020, accepted [22] Lutwak E. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38:131-150 [23] Lutwa E, Yang D, Zhang G. On the Lp-Minkowski problem. Trans Amer Math Soc, 2004, 356:4359-4370 [24] Nirenberg L. The Weyl and Minkowski problems in differential geometry in the large. Comm Pure Appl Math, 1953, 6:337-394 [25] Pogorelov A V. The Minkowski Multidimensional Problem. Washington, DC:VH Winston and Sons, 1978 [26] Schneider R. Convex bodies:the Brunn-Minkowski Theory. Cambridge:Cambridge University Press, 2014 [27] Xiong G, Li D. Reconstructing triangles inscribed in convex bodies from X-ray functions. Acta Math Sci, 2004, 24B(4):608-612 [28] Xiong G, Xiong J, Xu L. The Lp capacitary Minkowski problem for polytopes. J Funct Anal, 2019, 277:3131-3155 [29] Zhu G. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262:909-931 [30] Zou D, Xiong G. A unified treatment for Lp Brunn-Minkowski type inequalities. Comm Anal Geom, 2018, 26:435-460 [31] Zou D, Xiong G. The Lp Minkowski problem for the electrostatic p-capacity. J Differ Geom, 2020, 116:555-596 |