[1] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Functional Analysis, 1973, 14:349-381 [2] Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations//Universitext. New York:Springer, 2011 [3] d'Avenia P, Siciliano G, Squassina M. On fractional Choquard equations. Math Models Methods Appl Sci, 2014, 25(8):1447-1476 [4] Devillanova G, Carlo Marano G. A free fractional viscous oscillator as a forced standard damped vibration. Fractional Calculus and Applied Analysis, 2016, 19(2):319-356 [5] Fiscella A, Pucci P. p-Fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal RWA, 2017, 35:350-378 [6] Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94:156-170 [7] Guo L, Hu T. Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well. arXiv preprint. 2017, arXiv:1703.08028 [8] Gao F, Shen Z, Yang M. On the critical Choquard equation with potential well. arXiv preprint, 2017, arXiv:1703.01737 [9] Gao F, Yang M. On the Brézis-Nirenberg type critical problem for nonlinear Choquard equation. arXiv:1604.00826v4 [10] Gao F, Yang M. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J Math Anal Appl, 2017, 448(2):1006-1041 [11] Gao F, Yang M. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61:1219-1242 [12] Goel D, Sreenadh K. Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. 2019, arXiv:1901.11310v1 [13] Lan F, He X. The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions. Nonlinear Anal, 2019, 180:236-263 [14] Li A, Wang P, Wei C. Multiplicity of solutions for a class of Kirchhoff type equations with Hardy-LittlewoodSobolev critical nonlinearity. Appl Math Lett, 2020, 102:106105. DOI:10.1016/j.aml.2019.106105 [15] Lieb E, Loss M. Analysis. 2nd Ed//Grad Stud Math 14. Providence:American Mathematical Society, 2001 [16] Lions P L. The concentration-compactness principle in the calculus of variations. the limit case, part 1. Rev Mat Iberoam, 1985, 1:145-201 [17] Lü D. A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal, 2014, 99:35-48 [18] Ma P, Zhang J. Existence and multiplicity of solutions for fractional Choquard equations. Nonlinear Anal, 2017, 164:100-117 [19] Molica Bisci G, Radulescu V, Servadei R. Variational methods for nonlocal fractional problems. Encyclopedia of Mathematics and its Applications, 162, 2016. Cambridge University Press, ISBN 9781107111943 [20] Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations:Existence, qualitative properties and decay asymptotics. J Functional Anal, 2013, 265(2):153-184 [21] Mukherjee T, Sreenadh K. Fractional Choquard equation with critical nonlinearities. Nonlinear Differ Equat Appl, 2017, 24:63 [22] Mukherjee T, Sreenadh K. On Dirichlet problem for fractional p-Laplacian with singular nonlinearity. Adv Nonlinear Anal, 2016. https://doi.org/10.1515/anona-2016-0100 [23] Mukherjee T, Sreenadh K. Fractional choquard equation with critical nonlinearities. Nonlinear Differential Equations Appl, 2017, 24(6):63, 34 pp [24] Mukherjee T, Sreenadh K. Positive solutions for nonlinear Choquard equation with singular nonlinearity. Compl Var Ellip Equat, 2017, 62(8):1044-1071 [25] Nyamoradi N, Zaidan L I. Existence and multiplicity of solutions for fractional p-Laplacian SchrödingerKirchhoff type equations. Complex Variables and Elliptic Equations, 2017, 63(2):1-14 [26] Pekar S. Untersuchung über die Elektronentheorie der Kristalle. Berlin:Akademie Verlag, 1954 [27] Pucci P, Xiang M, Zhang B. Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian. Advances in Calculus of Variations, 2017. DOI:10.1515/acv-2016-0049 [28] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations//CBMS Reg Conf Series in Math Vol 65. Amer Math Soc Providence, RI, 1986 [29] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367:67-102 [30] Servadei R, Valdinoci E. A Brezis-Nirenberg result for nonlocal critical equations in low dimension. Commun Pure Appl Anal, 2013, 12:2445-464 [31] Song Y, Shi S. Existence and multiplicity of solutions for Kirchhoff equations with Hardy-LittlewoodSobolev critical nonlinearity. Appl Math Lett, 2019, 92:170-175 [32] Song Y, Shi S. Multiplicity results for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. J Dynamical and Control Systems, 2020, 26:469-480 [33] Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential Equations, 2011, 36:21-41 [34] Wang F, Xiang M. Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent. Elec J Differ Equat, 2016, 306:1-11 [35] Wang F, Xiang M. Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity. Anal Math Phys, 2017. https://doi.org/10.1007/s13324-017-0174-8 [36] Wang Y, Yang Y. Bifurcation results for the critical Choquard problem involving fractional p-Laplacian operator. Boundary Value Problems, 2018, 132. DOI:10.1186/s13661-018-1050-7 [37] Wang J, Zhang J, Cui Y. Multiple solutions to the Kirchhoff fractional equation involving Hardy-LittlewoodSobolev critical exponent. Boundary Value Problems. 2019, 124. doi:10.1186/s13661-019-1239-4 [38] Willem M. Minimax theorems. Boston:Birkhäuser, 1996 [39] Xiang M Q, Zhang B L, Zhang X. A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in $\mathbb{R}^N$. Adv Nonlinear Stud, 2017, 17(3):611-640 [40] Xiang M, Zhang B, Rǎdulescu V D. Superlinear Schrödinger-Kirchhof type problems involving the fractional p-Laplacian and critical exponent. Adv Nonlinear Anal, 2020, 9:690-709 |