[1] Strohm S, Tyson R C, Powell J A. Pattern formation in a model for mountain pine beetle dispersal:linking model predictions to data. Bull Math Biol, 2013, 75(10):1778-1797 [2] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoret Biol, 1970, 26(3):399-415 [3] Hu B Y, Tao Y S. To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math Mod Meth Appl Sci, 2016, 26(11):2111-2128 [4] Qiu S Y, Mu C L, Wang L C. Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production. Comput Math Appl, 2018, 75(9):3213-3223 [5] Li H Y, Tao Y S. Boundedness in a chemotaxis system with indirect signal production and generalized logistic souce. Appl Math Lett, 2018, 77(17):108-113 [6] Zhang Q S, Li Y X. Boundedness in a quasilinear fully parabolic Keller-Segel system with Logistic source. Z Angew Math Phys, 2015, 66(5):2473-2484 [7] Painter K J, Hillen T. Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q, 2002, 10(4):501-543 [8] Wang Z A, Hillen T. Classical solutions and pattern formation for a volume-filling chemotaxis model. Chaos, 2007, 17(3):37-108 [9] Wrzosek D. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal TMA, 2010, 73(2):338-349 [10] Wang Z A, Winkler M, Wrzosek D. Global regularity versus infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion. SIAM J Math Anal, 2012, 44(5):3502-3525 [11] Winkler M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J Math Pures Appl, 2013, 100(5):748-767 [12] Cieslak T, Stinner C. Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Differential Equations, 2011, 252(10):5832-5851 [13] Sugiyama Y. Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis. Differ Integral Equ, 2007, 20(2):133-180 [14] Laurencot P, Mizoguchi N. Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion. Ann Henri Poincare, 2017, 34(1):197-220 [15] Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv Math Sci Appl, 1995, 5(2):581-601 [16] Tao Y S, Wang M. Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity, 2008, 21(10):2221-2238 [17] Tao Y S, Winkler M. A chemotaxis-haptotaxis model:the roles of nonlinear diffusion and logistic source. SIAM J Math Anal, 2011, 43(2):685-704 [18] Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215(1):52-107 [19] Nirenberg L. An extended interpolation inequality. Ann Scuola Norm Sci, 1966, 20(3):733-737 [20] Tao Y S, Wang Z A. Competing effects of attraction vs. repulsion in chemotaxis. Math Mod Meth Appl S, 2013, 23(1):1-36 [21] Alikakos N D. Lp bounds of solutions of reaction-diffusion equations. Commun Part Diff Eq, 1979, 4(8):827-868 |