[1] Li T. Global Classical Solutions for Quasilinear Hyperbolic Systems. Paris:Masson; Chichester:John Wiley & Sons, Ltd, 1994 [2] Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Fourth ed. Berlin:Springer-Verlag, 2016 [3] Li T, Yu L. One-sided exact boundary null controllability of entropy solutions to a class of hyperbolic systems of conservation laws. J Math Pures Appl, 2017, 107(1):1-40 [4] Bruce P J K, Babinsky H. Unsteady shock wave dynamics. J Fluid Mech, 2008, 603:463-473 [5] Cai H, Tan Z. Time periodic solutions to the compressible Navier-Stokes-Poisson system with damping. Commun Math Sci, 2017, 15(3):789-812 [6] Chen S H, Hsia C H, Jung C Y, et al. Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation. J Math Anal Appl, 2017, 445(1):655-676 [7] Jin C. Time-periodic solutions of the compressible Navier-Stokes equations in R4. Z Angew Math Phys, 2016, 67(1):Art 5, 21 pp [8] Jin C, Yang T. Time periodic solution to the compressible Navier-Stokes equations in a periodic domain. Acta Math Sci, 2016, 36B(4):1015-1029 [9] Luo T. Bounded solutions and periodic solutions of viscous polytropic gas equations. Chinese Ann Math, Ser B, 1997, 18(1):99-112 [10] Matsumura A, Nishida T. Periodic solutions of a viscous gas equation//Recent Topics in Nonlinear PDE, IV (Kyoto, 1988). North-Holland Math Stud 160. Amsterdam:North-Holland, 1989:49-82 [11] Dafermos C M. Periodic BV solutions of hyperbolic balance laws with dissipative source. J Math Anal Appl, 2015, 428(1):405-413 [12] Frid H. Periodic solutions of conservation laws constructed through Glimm scheme. Trans Amer Math Soc, 2001, 353(11):4529-4544 [13] Frid H. Decay of almost periodic solutions of conservation laws. Arch Ration Mech Anal, 2002, 161(1):43-64 [14] Frid H, Perepelitsa M. Spatially periodic solutions in relativistic isentropic gas dynamics. Comm Math Phys, 2004, 250(2):335-370 [15] Glimm J, Lax P D. Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, 1970, (101) [16] Nishida T. Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc Japan Acad, 1968, 44:642-646 [17] Qu P, Xin Z. Long time existence of entropy solutions to the one-dimensional non-isentropic Euler equations with periodic initial data. Arch Ration Mech Anal, 2015, 216(1):221-259 [18] Wang Z, Zhang Q. Periodic solutions to p-system constructed through Glimm scheme. J Math Anal Appl, 2016, 435(2):1088-1098 [19] Takeno S. Time-periodic solutions for a scalar conservation law. Nonlinear Anal:TMA, 2001, 45(8):1039-1060 [20] Temple B, Young R. A Nash-Moser framework for finding periodic solutions of the compressible Euler equations. J Sci Comput, 2015, 64(3):761-772 [21] Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann Math, 2005, 161(1):223-342 |