[1] Abidi H, Hmidi T. Résultats d'existence dans des espaces critiques pour le système de la MHD inhomogène. Annales Math Blaise Pascal, 2007, 14:103-148 [2] Abidi H, Paicu M. Global existence for the magnetohydrodynamic system in critical spaces. Proc Roy Soc Edinburgh Sect A, 2008, 138(3):447-476 [3] Bergh J, Lofstrom J. Interpolation Space, An Introduction. Berlin, Heidelberg, New York:Spring-Verlag, 1976 [4] Cao C, Regmi D, Wu J. The 2D MHD equations with horizontal dissipation and horizontal magneticdiffusion. J Differential Equations, 2013, 254:2661-2681 [5] Cao C, Wu J. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv Math, 2011, 226(2):1803-1822 [6] Desjardins B, Le Bris C. Remarks on a nonhomogeneous model of magnetohydrodynamics. Diff Integ Eqns, 1998, 11:377-394 [7] Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46:241-279 [8] Fan J S, Li F C, Nakamura G, Tan Z. Regularity criteria for the three-dimensional magnetohydrodynamic equations. J Differential Equations, 2014, 256:2858-2875 [9] Fan J S, Zhou Y. Uniform local well-posedness for the density-dependent magnetohydrodynamic equations. Appl Math Lett, 2011, 24:1945-1949 [10] Gerbeau J F, Le Bris C. Existence of solution for a density-dependent magnetohydrodynamic equation. Adv Diff Eqns, 1997, 2:427-452 [11] Gong H J, Li J K. Global existence of strong solutions to incompressible MHD. Commun Pure Appl Anal, 2014, 13(4):1553-1561 [12] Gui G L. Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity. J Funct Anal, 2014, 267(5):1488-1539 [13] Huang X, Wang Y. Global strong solution to the 2D nonhomogeneous incompressible MHD system. J Differential Equations, 2013, 254(2):511-527 [14] Huang X D, Wang Y. Global strong solution of 3D inhomogeneous Navier-Stokes equations with densitydependent viscosity. J Differential Equations, 2015, 259:1606-1627 [15] Lei Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J Differential Equations, 2015, 259(7):3202-3215 [16] Li X L, Wang D H. Global strong solution to the three-dimensional density-dependent incompressible magnetohydrody-namic flows. J Differential Equations, 2011, 251(6):1580-1615 [17] Lin F H, Xu L, Zhang P. Global small solutions to 2-D incompressible MHD system. J Differ Equ, 2015, 259(10):5440-5485 [18] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5):635-664 [19] Si X, Ye X. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients. Z Angew Math Phys, 2016, 67(5):126 [20] Su M L, Qian X H, Wang J. Global existence of 2D nonhomogeneous incompressible magnetohydrodynamics with vacuum. Bound Value Probl, 2014, 2014:94, 14 pp [21] Su S B, Zhao X K. Global wellposedness of magnetohydrodynamics system with temperature-dependent viscosity. Acta Math Sci, 2018, 38B(3):898-914 [22] Wang F, Wang K Y. Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal Real World Appl, 2013, 14(1):526-535 [23] Wu H W. Strong solutions to the incompressible magnetohydrodynamic equations with vacuum. Comput Math Appl, 2011, 61(9):2742-2753 [24] Wang F, Wang K Y. Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal Real World Appl, 2013, 14(1):526-535 [25] Xu L, Zhang P. Global small solutions to three-dimensional incompressible magnetohydrodynamical system. SIAM J Math Anal, 2015, 47(1):26-65 [26] Yu H B. Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain. Acta Math Sci, 2017, 37B(2):395-404 [27] Zhang J W. Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient. J Differential Equations, 2015, 259:1722-1742 [28] Zhang P X, Yu H B. Global regularity to the 3D incompressible MHD equations. J Math Anal Appl, 2015, 432:613-631 [29] Zhou Y, Fan J S. A regularity criterion for the density-dependent magnetohydrodynamic equations. Math Meth Appl Sci, 2010, 33:1350-1355 |