[1] Roy T. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on R3. Disc Cont Dyn Sys A, 2008, 24(4):1307-1323
[2] Lindbald H, Sogge C. On existence and scattering with minimal regularity for semilinear wave equations. J Funct Anal, 1995, 130:357-426
[3] Kenig C, Ponce G, Vega L. Global well-posedness for semi-linear wave equations. Comm Partial Differ Equ, 2000, 25:1741-1752
[4] Bourgain J. Refinement of Strichartz inequality and applications to 2D-NLS with critical nonlinearity. Internat Math Res Notices, 1998, 5:253-283
[5] Gallagher I, Planchon F. On global solutions to a dofocusing semi-linear wave equation. Revista Math Iberoamericana, 2003, 19:161-177
[6] Bahouri H, Chemin J. On global well-posedness for defocusing cubic wave equation. Internat Math Res Notices, 2006, Article ID 54873:1-12
[7] Klainerman S, Tataru D. On the optimal local regularity for the Yang-Mills equations in R4+1. J Amer Math Soc, 1999, 12:93-116
[8] Roy T. Global well-posedness for the radial defocusing cubic wave equation on R3 and for rough data. EJDE, 2007, 2007:1-22
[9] Fonseca G E. Global well-posedness fro two dimensional semilinear wave equations. Revista Colombiana de Mathemáticas, 2006, 34:91-101
[10] Bourgain J. New global well-posedness results for non-linear Schrödinger equations. AMS, 1999
[11] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Sharp global well-posedness for KdV and modified Kdv on R and T. J Amer Math Soc, 2003, 16:705-749
[12] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. A refined global well-posedness result for Schrödinger equations with derivatives. SIAM J Math Anal, 2002, 34:64-86
[13] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Global well-posedness and scattering for rough solutions of a nonlinear Schrödinger equation on R3. Commmunication on Pure and Applied Math, 2004, 57(8):987-1014
[14] Ginebre J, Velo G. Generalized Strichartz inequalities for the wave equation. J Func Anal, 1995, 133:50-68
[15] Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120:955-980
[16] Tao T. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences. Local and global analysis. Washington, DC, 2006
[17] Roy T. Global analysis of the defocusing cubic wave equation in dimension 3(preprint). 2008
[18] Wang B X, Huo Z H, Chao C C, Guo Z H. Harmonic analysis method for nonlinear evolution equations. World Scientific Press, 2011
[19] Coifman R R, Meyer Y. Commutateurs d'integrales singulières et opérateurs multilinéaires. Ann Inst Fourier (Grenoble), 1978, 28:177-202
[20] Guo Z H, Wang B X. Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation. J Differential Equations, 2009, 246:3864-3901
[21] Li Y S, Wu Y H, Xu G X. Low regularity global solutions for the focusing mass-critical nonlinear Schrodinger equation in R. SIAM J Math Anal, 2011, 43:322-340
[22] Li Y S, Wu Y H, Xu G X. Global well-posedness for periodic mass-critical nonlinear Schrodinger equation. J Differential Equations, 2011, 250:2715-2736
[23] Yang X Y, Li Y S. Global well-posedness for a fifth-order shallow water equation in Sobolev spaces. J Differential Equations, 2010, 248:1458-1472 |