[1] Witsenhausen H S. A class of hybrid-state continuous-time dynamic systems. IEEE Trans Automatic Cont, 1966, 11(6):665-683
[2] Cellier F E. Combined Continuous/Discrete System Simulation by Use of Digital Computer:Techniques and Tools. Switzerland Zurich:Swiss Federal Institute of Technology, 1979
[3] Michel A N, Hu B. Towards a stability theory of general hybrid dynamical systems. Automatica, 1999, 35(3):371-384
[4] Yong J M. Systems governed by ordinary differential equations with continuous switching and impulse controls. Appl Math Opti, 1989, 20:223-235
[5] Branicky M S. Multiple Lyapunov functions and analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 34(4):475-482
[6] Mo Y W, Xiao D Y. Overview of hybrid dynamic system and its application. Contr Theory Appl, 2002, 19(1):1-8
[7] Guo L, Yu R L, Tian F Z. Optimal control of one kind general jump transition system. Journal of Shandong University, 2006, 41(1):35-40(in Chinese)
[8] Zhu F, Antsaklis P J. Optimal control of hybrid switched systems:a brief survey. Discrete Event Dynamics Systems:Theory and Applications, 2015, 25:345-364
[9] Marzbann H R, Hoseini S M. A hybrid approximation scheme for discretizing constrained quadratic optimal control problems. J Franklin Inst, 2014, 351:2640-2656
[10] Lee T. Optimal control of partitioned hybrid systems via discrete-time Hamilton-Jacobi theory. Automatica, 2014, 50:2062-2069
[11] Branicky M S, Borkar V S, Mirtter S K. A unified framework for hybrid control:model and optimal control theory. IEEE Trans Automatic Cont, 1998, 43(1):31-45
[12] Bensoussan A, Memaldi J L. Hybrid control and dynamic programming. Dynamics of Continuous, Discrete and Impulsive Systems, 1997, 3:395-442
[13] Xu X P, Antsaklis P J. Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans Automatic Cont, 2004, 49(1):2-16
[14] Fridman E. Exact slow-fast decomposition of the nonlinear singularly perturbed optimal control problem. Syst Control Lett, 2000, 40:121-131
[15] Ni M K, Dmitriev M G. Steplike contrast structure in an elementary optimal control problem. Comput Math Math Phys, 2010, 50(8):1312-1323
[16] Koskie S, Coumarbatch C, Gajic Z. Exact slow-fast decomposition of the singularly perturbed matrix differential Riccati equation. Applied Mathematics and Computation, 2010, 216:1401-1411
[17] Ni M K, Lin W Z. Minimizing sequence of variational problems with small parameters. Applied Mathematics and Mechanics, English Edition, 2009, 30(6):695-701
[18] Ni M K, Dmitriev M G. Contrast structures in the simplest vector variational problem and their asymptotics. Avtomatika i Telemekhanika, 1998, 5:41-52
[19] Vasil'eva A B, Dmitriev M G, Ni M K. On a step-like contrast structure for a problem of the calculus of variations. Comput Math Math Phys, 2004, 44(7):1203-1212
[20] Kokotovic P, Khalil H, O'Reilly J. Singular Perturbation Methods in Control:Analysis and Design. Orlando:Academic Press, 1986
[21] Vasil'eva A B, Butuzov V F. Asymptotic Expansions of Singularly Perturbed Differential Equations. Moscow:Nauka, 1973
[22] Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems. Basel, Boston, Berlin:Birkhauser, 2007
[23] Vasilieva A B, Butuzov V F, Kalachev L V. The Boundary Function Method for Singular Perturbation Problems. Philadelphia:SIAM, 1995
[24] Wang A F, Ni M K. The interior layer for a nonlinear singularly perturbed differential difference equation. Acta Mathematica Scientia, 2012, 32B(2):695-709
[25] Xie F. Singular perturbation for a class of reaction diffusion equation. Acta Mathematica Scientia, 2003, 23A(3):369-373(in Chinese)
[26] Mo J Q, Wang H, Lin W T. The solvability for a class of singularly perturbed quasi-linear differential system. Acta Mathematica Scientia, 2008, 28B(3):495-500 |