[1] Coti-Zelati V, Rabinowitz P H. Homoclinic orbits for second order Hamiltionian systems possessing superquadratic potentials. J Amer Math Soc, 1991, 4: 693-727
[2] Dunford N, Schwartz J T. Linear Operators, Part Ⅰ: General Theory. New York: Wiley, 1988
[3] Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press, 1991
[4] Friesecke G, Wattis J. Existence theorem for solitary waves on lattice. Commun Math Phys, 1994, 161: 391-418
[5] Lions J L, Magenes E. Non-Homogeneous Boundary Value Problems and Applications, I. New York: Springer, 1972
[6] Lions P L. The concentration-compactness principle in the calculus of variations: The locally compact cases, Part Ⅰ and Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223-283
[7] Makita P D. Periodic and homoclinic travelling waves in infinite lattices. Nonlinear Anal, 2011, 74: 2071-2086
[8] Pankov A, Pflü ger K. Travelling waves in lattice dynamical systems. Math Meth Appl Sci, 2000, 23: 1223-1235
[9] Pankov A. Travelling waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices. London: Imperial College Press, 2005
[10] Pankov A, Rothos V. Travelling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete Contin Dyn Syst, 2011, 30: 835-849
[11] Smets D, Willem M. Solitary waves with precribed speed on infinit lattices. J Funct Anal, 1997, 149: 266-275
[12] Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal, 2009, 257: 3802-3822
[13] Wan L L, Tang C L. Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition. Acta Math Sci, 2012, 32B(4): 1559-1570
[14] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
[15] Zhang X, Ma S. Periodic and Solitary Travelling Waves in Infinite Lattices without Ambrosetti-Rabinowitz Condition. J Dyn Diff Equat, 2014, DOI 10.1007/s10884-014-9387-9 |