[1] Janson S. On functions with conditions on the mean oscillation. Ark Mat, 1976, 14: 189–196
[2] Stegenga D A. Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation. Amer J Math, 1976, 98: 573–589
[3] Nakai E, Yabuta K. Pointwise multipliers for functions of bounded mean oscillation. J Math Soc Japan, 1985, 37: 207–218
[4] Nakai E, Yabuta K. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of
homogeneous type. Math Japon, 1997, 46: 15–28
[5] Lerner A K. Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces. Math Z, 2005, 251: 509–521
[6] Diening L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657–700
[7] Lin H, Nakai E, Yang D. Boundedness of Lusin-area and g functions on localized BMO spaces over doubling
metric measure spaces. Bull Sci Math, 2011, 135: 59–88
[8] Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115–150
[9] Shen Z. Lp estimates for Schr¨odinger operators with certain potentials. Ann Inst Fourier (Grenoble), 1995, 45: 513–546
[10] Li P, Peng L. Lp boundedness of commutator operator associated with Schr¨odinger operators on Heisenberg
group. Acta Math Sci, 2012, 32B: 568–578
[11] Chen Z, Sun M. Area integral functions for sectorial operators on Lp spaces. Acta Math Sci, 2014, 34B: 739–747
[12] Yan X. Boundedness of Stein’s square functions associated to operators on Hardy spaces. Acta Math Sci, 2014, 34B: 891–904
[13] Yang J, Wang Y, Chen W. Endpoint estimates for the commutator of pseudo-differential operators. Acta Math Sci, 2014, 34B: 387–393
[14] Dziuba´nski J, Garrig´os G, Mart´?nez T, et al. BMO spaces related to Schr¨odinger operators with potentials
satisfying a reverse H¨older inequality. Math Z, 2005, 249: 329–356
[15] Dziuba´nski J, Zienkiewicz J. Hardy space H1 associated to Schr¨odinger operator with potential satisfying reverse H¨older inequality. Rev Mat Iberoam, 1999, 15: 279–296
[16] Yang D, Zhou Y. Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to Schr¨odinger operators. Trans Amer Math Soc, 2011, 363: 1197–1239
[17] Yang Da, Yang Do, Zhou Y. Localized BMO and BLO spaces on RD-spaces and applications to Schr¨odinger
operators. Commun Pure Appl Anal, 2010, 9: 779–812
[18] Dziuba´nski J. Hardy spaces for Laguerre expansions. Constr Approx, 2008, 27: 269–287
[19] Dziuba´nski J. Atomic decomposition of Hardy spaces associated with certain Laguerre expansions. J Fourier Anal Appl, 2009, 15: 129–152
[20] Cha L, Liu H. BMO spaces for Laguerre expansions. Taiwan J Math, 2012, 16: 2153–2186
[21] Coifman R R, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homog`enes, Lecture Notes in Math, Vol 242. Berlin-New York: Springer-Verlag, 1971
[22] Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
[23] Campanato S. Propriet`a di h¨olderianit`a di alcune classi di funzioni. Ann Scuola Norm Sup Pisa (3), 1963, 17: 175–188
[24] Peetre J. On the theory of Lp, spaces. J Funct Anal, 1969, 4: 71–87
[25] Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces//Representation theorems
for Hardy spaces: Ast´erisque, 77. Paris: Soc Math France, 1980: 67–149
[26] Stein E M. Harmonic Analysis: Real-VariableMethods, Orthogonality, and Oscillatory Integrals. Princeton, N J: Princeton University Press, 1993
[27] Lemari´e-Rieusset P G. The Navier-Stokes equations in the critical Morrey-Campanato space. Rev Mat Iberoam, 2007, 23: 897–930
[28] Nakai E. The Campanato, Morrey and H¨older spaces on spaces of homogeneous type. Studia Math, 2006, 176: 1–19
[29] Nakai E. Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math, 2008, 188: 193–221
[30] Duong X T, Xiao J, Yan L. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13: 87–111
[31] Guliyev V, Akbulut A, Mammadov Y. Boundedness of fractional maximal operator and their higher order commutators in generalized Morrey spaces on Carnot groups. Acta Math Sci, 2013, 33B: 1329–1346
[32] Nakai E. A characterization of pointwise multipliers on the Morrey spaces. Sci Math, 2000, 3: 445–454
[33] Liu L, Yang D. Pointwise multipliers for Campananto spaces on Gauss measure spaces. Nagoya Math J, 2014, 214: 169–193
[34] Han Y, M¨uller D, Yang D. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carath´eodory spaces. Abstr Appl Anal, 2008, Art. ID 893409
[35] Yang D, Zhou Y. New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscripta Math, 2011, 134: 59–90
[36] Yang D C, Yang D, Zhou Y. Localized Morrey-Campanato spaces on metric measure spaces and applications
to Schr¨odinger operators. Nagoya Math J, 2010, 198: 77–119
[37] Goldberg D. A local version of real Hardy spaces. Duke Math J, 1979, 46: 27–42
[38] Lin H, Nakai E, Yang D. Boundedness of Lusin-area and g functions on localized Morrey-Campanato spaces over doubling metric measure spaces. J Funct Spaces Appl, 2011, 9: 245–282
[39] Lebedev N N. Special Functions and Their Applications. New York: Dover, 1972 |