[1] Namiki T. A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans Microwave Theory Tech, 1999, 47(10): 2003–2007
[2] Zheng F, Chen Z, Zhang J. Toward the development of a three-dimensional unconditionally stable finite difference time-domain method. IEEE Trans Microwave Theory Tech, 2000, 48(9): 1550–1558
[3] Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2nd ed. Boston: Artech House, 2000.
[4] Ge D B, Yan Y B. Finite Difference Time Domain Method for Electromagnetic Waves (in Chinese). Xian: Press of Xian Dian University, 2005
[5] Sheng X Q. A Brief Treatise on Computational Electromagnetics. 2nd ed. Hefei: Press of University of Science and Technology of China, 2008
[6] Lv Y H. Numerical Methods for Computational Electromagnetics (in Chinese). Beijing: Tsinghua University Press, 2006
[7] Gedney S D, Liu G, Roden J A, et al. Perfectly matched layer media with CFS for an unconditional stable ADI-FDTD method. IEEE Trans Anten Propagat, 2001, 49(11): 1554–1559
[8] Garcia S G, Lee T W, Hagness S C. On the accuracy of the ADI-FDTD method. IEEE Anten Wireless Propagat Lett, 2002, 1(1): 31–34
[9] Zhao A P. Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method. IEEE Trans Microwave Theory Tech, 2002, 50(4): 1156–1164
[10] Zhao Y W, Nie Z P. Unconditionally stable 2-D ADI-FDTD methods in perfectly matched uniaxial medium(in chinese). Chinese J Radio Sci, 2002, 17(6): 586–589
[11] Gao L, Zhang B, Liang D. Analysis of an ADI finite difference method for the time dependent Maxwell´s equations in 3-D//Advances in Scientific Computing and Applications. Beijing: Science Press, 2004: 171–180
[12] Song W, Hao Y, Parini C G. An ADI-FDTD algorithm in Curvilinear Coordinates. Electron Lett, 2005, 41(23): 1259–1261
[13] Welfert B D. Analysis of iterated ADI-FDTD schemes for Maxwell Curl equations. J Comput Phys, 2007, 222(1): 9–27
[14] Smithe D N, Cary J R, Carlsson J A. Divergence preservation in the ADI algorithms for electromagnetics. J Comput Phys, 2009, 228(19): 7289–7299
[15] Yee K S. Numerical solution of initial boundary value problems involving Maxwell´s equations in isotropic media. IEEE Trans Anten Propagat, 1966, 14(5): 302–307
[16] Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic difference equations. J Soc Indust Appl Math, 1955, 3(1): 28–41
[17] Douglas J, Rachford H H. On the numerical solution of heat conduction problems in two and three space variables. Trans Amer Math Soc, 1956, 82(2): 421–439
[18] Gao L. Splitting finite difference time domain methods for time-domain Maxwell equations [D]. Coventry: Coventry University, 2006
[19] Gao L, Zhang B. Optimal error estimates and energy conservation properties of the ADI-FDTD scheme on staggered grids for 3D Maxwell´s equations (submitted)
[20] Chen W, Li X, Liang D. Energy-conserved splitting finite difference time-domain methods for Maxwell´s equations in three dimensions. SIAM J Numer Anal, 2010, 48(4): 1530–1554
[21] Kong L, Hong J, Zhang J. Splitting multisymplectic integrators for Maxwell´s equations. J Comput Phys, 2010, 229(11): 4259–4278
[22] Monk P, S¨uli E. A convergence analysis of Yee´s scheme on nonuniform grid. SIAM J Numer Anal, 1994, 31(2): 393–412
[23] Lin Q, Li J. Superconvergence analysis for Maxwell´s equations in dispersive media. Math Comput, 2007, 77(262): 757–771
[24] Lin Q, Yan N. Global superconvergence for Maxwell´s equations. Math Comput, 1999, 69(229): 159–176
[25] Zhang T, Li J, Zhang S. Superconvergence of discontinuous Galerkin methods for hyperbolic systems. J Compu Appl Math, 2009, 223(2): 725–734
[26] Chen C M, Huang Y Q. High Accuracy Theory of Finite Element Methods (in Chinese). Changsha: Hunan Science Press, 1995
[27] Fang N S, Ying L A. Stability analysis of FDTD to UPML for time dependent Maxwell equations. Sci China Ser A, 2009, 52(4): 794–1811
[28] Nicolaides R A, Wang D Q. Convergence analysis of a covolume scheme for Maxwell´s equations in three dimensions. Math Comput, 1998, 67(223): 947–963
[29] Fang N S, Ying L A. Analysis of FDTD to UPML for maxwell equations in polar coordinates. Acta Math Sin, 2011, 31(5): 2007–2032
[30] Press W, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in Fortran: the Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 1992 |