[1] Bergh J, L¨ofstr¨om J. Interpolation Spaces, An Introduciton. Grundlehren der Mathematischen Wissenschaften. Berlin-New York: Springer-Verlag, 1976
[2] Bourgain J. Global well-posedness of defocusing 3D critical NLS in the radial case. J Amer Math Soc, 1999, 12: 145–171
[3] Brenner P. On space-time means and everywhere defined scattering operators for tnonlinear Klein-Gordon equations. Math Z, 1984, 186: 383–391
[4] Brenner P. On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations. J Differ Equ, 1985, 56: 310–344
[5] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Viriel, Morawetz and interaction Morawetz inequalities, preprint
[6] Ginibre J, Velo G. Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schr¨odinger equations. Ann Inst H Poincar´e Phys Th´eor, 1985, 43: 399–442
[7] Ginibre J, Velo G. Generalized Strichartz inequalities for the wave equation. J Funct Anal, 1995, 133: 50–68
[8] Ginibre J, Velo G. Scattering Theory in the Energy Space for a Class of Hartree Equations, Nonlinear Wave Equations (Providence, RI, 1998)//Contemp Math, 263. Providence, RI: Amer Math Soc, 2000
[9] Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120(5): 955–980
[10] Menzala G P, Strauss W A. On a wave equation with a cubic convolution. J Differ Equ, 1982, 43: 93–105
[11] Miao C. The Modern Method of Nonlinear Wave Equations, Lectures in Contemporary Mathematics. 2nd ed. Monographs on Modern Pure Mathematics, No 133. Beijing: Science Press, 2010
[12] Miao C, Xu G, Zhao L. Global well-posedness and scattering for the energy-critical, defousing Hartree equation for radial data. J Funct Anal, 2007, 253: 605–627
[13] Miao C, Zhang B, Fang D. Global well-posedness for the Klein-Gordon equations below the energy norm. J Partial Differ Equ, 2004, 17(2): 97–121
[14] Mochizuki K. On small data scattering with cubic convolution nonlinearity. J Math Soc Japan, 1989, 41: 143–160
[15] Morawetz C, Strauss W A. Decay and scattering of solutions of a nonlinear relativistic wave equation. Comm Pure Appl Math, 1972, 25: 1–31
[16] Nakanishi K. Energy scattering for nonlinear Klein-Gordon and Schr¨oinger equations in spatial dimensions 1 and 2. J Funct Anal, 1999, 169(1): 201–225
[17] Nakanishi K. Energy scattering for Hartree equations. Math Res Lett, 1999, 6: 107–118
[18] Nakanishi K. Unique global existence and asymptotic behaviour of solutions for wave equations with non-coercive critical nonlinearity. Comm Partial Differ Equ, 1999, 24: 185–221
[19] Pecher H. Low energy scattering for nonlinear Klein-Gordon equations. J Funct Anal, 1985, 63: 101–122
[20] Strauss W A. Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41: 110–133
[21] Strauss W A. Nonlinear scattering theory at low energy sequel. J Funct Anal, 1981, 43: 281–293
[22] Tao T. Nonlinear Dispersive Equations, Local and Global Analysis. CBMS Vol 106. Providence, RI: Amer Math Soc, 2006
[23] Visciglia N. On the decay of solutions to a class of defocusing NLS. Math Res Lett, 2009, 16: 919–926
[24] Wu H G, Yang H, Liu J. Global existence for semilinear wave equation in exterior domain. Acta Math Sci, 2007, 27A(6): 1089–1097 |