[1] Al`os E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766–801
[2] Bojdecki T, Gorostiza L G, Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times. Statist Probab Lett, 2004, 69: 405–419
[3] Bojdecki T, Gorostiza L G, Talarczyk A. Limit theorems for occupation time fluctuations of branching systems 1: long-range dependence. Stochastic Process Appl, 2006, 116: 1–18
[4] Bojdecki T, Gorostiza L G, Talarczyk A. Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Elect Comm Probab, 2007, 12: 161–172
[5] Guerra J M E, Nualart D. The 1 H variation of the divergence integral with respect to the fractional Brownian motion for H > 1/2 and fractional Bessel processes. Stochastic Process Appl, 2005, 115: 91–115
[6] Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006
[7] Hu Y, Nualart D. Some processes associated with fractional Bessel processes. J Theoret Probab, 2005, 18: 377–397
[8] Pitman J, Yor M. Bessel processes and infinitely divisible laws//Stochastic Integrals. Lecture Notes in Math, 851. Berlin: Springer, 1980: 285–370
[9] Revuz D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer, 1999
[10] Tudor C. Some properties of the sub-fractional Brownian motion. Stochastics, 2007, 79: 431–448
[11] Tudor C. Inner product spaces of integrands associated to sub-fractional Brownian motion. Statist Probab Lett, 2008, 78: 2201–2209
[12] Tudor C. Some aspects of stochastic calculus for the sub-fractional Brownian motion. Ann Univ Bucuresti Mathematicˇa, 2008, 57: 199–230
[13] Yan L, Shen G. On the collision local time of sub-fractional Brownian motions. Statist Probab Lett, 2010, 80: 296–308
[14] Yan L, Shen G. Itˆo formulas for the sub-fractional Brownian motion. Commun Stoch Anal, 2011, 5: 135–159
[15] Yor M. Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems. Basel: Birkh¨auser, 1997 |