数学物理学报(英文版) ›› 2022, Vol. 42 ›› Issue (6): 2478-2504.doi: 10.1007/s10473-022-0617-7
Bo HUANG1, Wei NIU2,3, Dongming WANG4,5
收稿日期:
2022-08-18
出版日期:
2022-12-25
发布日期:
2022-12-16
通讯作者:
Wei NIU, E-mail: Wei.Niu@buaa.edu.cn
E-mail:Wei.Niu@buaa.edu.cn
基金资助:
Bo HUANG1, Wei NIU2,3, Dongming WANG4,5
Received:
2022-08-18
Online:
2022-12-25
Published:
2022-12-16
Contact:
Wei NIU, E-mail: Wei.Niu@buaa.edu.cn
E-mail:Wei.Niu@buaa.edu.cn
Supported by:
摘要: This paper provides a survey on symbolic computational approaches for the analysis of qualitative behaviors of systems of ordinary differential equations, focusing on symbolic and algebraic analysis for the local stability and bifurcation of limit cycles in the neighborhoods of equilibria and periodic orbits of the systems, with a highlight on applications to computational biology.
中图分类号:
Bo HUANG, Wei NIU, Dongming WANG. SYMBOLIC COMPUTATION FOR THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS[J]. 数学物理学报(英文版), 2022, 42(6): 2478-2504.
Bo HUANG, Wei NIU, Dongming WANG. SYMBOLIC COMPUTATION FOR THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS[J]. Acta mathematica scientia,Series B, 2022, 42(6): 2478-2504.
[1] Poincaré H. Mémoire sur les courbes définies par une équation différentielle (I), (II). Journal de Mathématiques Pures et Appliquées, 1881, 7: 375-422; 1882, 8: 251-296; 1885, 1: 167-244 [2] Liapunov A. The General Problem of the Stability of Motion. Kharkov: Kharkov Mathematical Society, 1892 [3] Nemitskij V, Stepanov V. Qualitative Theory of Differential Equations. Princeton: Princeton University Press, 1960 [4] Zhang Z, Ding T, Huang W, Dong Z. Qualitative Theory of Differential Equations. Providence, RI: American Mathematical Society, 1992 [5] Qin Y, Zhang J, Qin C. Computer deduction of stability criteria for a class of nonlinear systems. J Qufu Normal University, 1985, 2: 1-11(in Chinese) [6] Wang D. Mechanical manipulation for a class of differential systems. J Symbolic Comput, 1991, 12: 233-254 [7] Wu W-T. Basic principles of mechanical theorem proving in elementary geometries. J Sys Sci & Math Sci, 1984, 4: 207-235; J Automat Reasoning, 1986, 2: 221-252 [8] Buchberger B. Gröbner bases: An algorithmic method in polynomial ideal theory//Bose N K, Ed. Multidimensional Systems Theory. Reidel: Dordrecht, 1985: 184-232 [9] Jin X, Wang D. On the conditions of Kukles for the existence of a centre. Bull London Math Soc, 1990, 22: 1-4 [10] Christopher C, Lloyd N. On the paper of Jin and Wang concerning the conditions for a center in certain cubic systems. Bull London Math Soc, 1990, 22: 5-12 [11] Lloyd N, Pearson J. Computing centre conditions for certain cubic systems. J Comput Appl Math, 1992, 40: 323-336 [12] Christopher C. Invariant algebraic curves and conditions for a centre. Proc R Soc Edinb Sect A, 1994, 124: 1209-1229 [13] Ye W, Ye Y. Qualitative theory of the Kukles systems: (I) number of critical points. Ann Differ Equations, 2001, 17: 275-286 [14] Pearson J, Lloyd N. Kukles revisited: Advances in computing techniques. Comput Math Appl, 2010, 60: 2797-2805 [15] Hong H, Liska R, Steinberg S. Testing stability by quantifier elimination. J Symbolic Comput, 1997, 24: 161-187 [16] Wang D, Xia B. Stability analysis of biological systems with real solution classification//Gao X-S, Labahn G, Ed. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 2005: 354-361 [17] Hong H, Tang X, Xia B. Special algorithm for stability analysis of multistable biological regulatory systems. J Symbolic Comput, 2015, 70: 112-135 [18] Pearson J, Lloyd N, Christopher C. Algorithmic derivation of centre conditions. SIAM Rev, 1996, 38: 619-636 [19] Romanovski V, Shafer D. The Center and Cyclicity Problems: A Computational Algebra Approach. Boston, MA: Birkhäuser Boston Inc, 2009 [20] Romanovski V. Computational algebra and limit cycles bifurcations in polynomial systems. Nonlinear Phenom Complex Syst, 2007, 10: 79-85 [21] Chen C, Corless R, Moreno Maza M, Yu P, Zhang Y. An application of regular chain theory to the study of limit cycles. Int J Bifurcation Chaos, 2013, 23: 1350154-1-23 [22] Sun X, Huang W. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. J Symbolic Comput, 2017, 79: 197-210 [23] Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal [D]. Austria: Universität Innsbruck, 1965 [24] Faugère J-C, Gianni P, Lazard D, et al. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J Symbolic Comput, 1993, 16: 329-344 [25] Faugère J-C, Mou C. Sparse FGLM algorithms. J Symbolic Comput, 2017, 80: 538-569 [26] Faugère J-C. A new efficient algorithm for computing Gröbner bases (F4). J Pure Appl Algebra, 1999, 139: 61-88, 1999 [27] Faugère J-C. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)//Giusti M, Ed. Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 2002: 75-83 [28] Wu W-T. Mathematics Mechanization. Beijing: Science Press/Kluwer Academic, 2000 [29] Ritt J. Differential Algebra. New York: American Mathematical Society, 1950 [30] Aubry P, Lazard D, Moreno Maza M. On the theories of triangular sets. J Symbolic Comput, 1999, 28: 105-124 [31] Wang D. Elimination Methods. New York: Springer-Verlag, 2001 [32] Cox D, Little J, O’Shea D. Using Algebraic Geometry. New York: Springer, 2005 [33] Collins G. Quantifier elimination for real closed fields by cylindrical algebraic decomposition//Barkhage H, Ed. Proceedings of the Second GI Conference on Adtomata Theory and Formal Languages. Berlin Heidelberg: Springer, 1975: 134-183 [34] Collins G, Hong H. Partial cylindrical algebraic decomposition for quantifier elimination. J Symbolic Comput, 1991, 12: 299-328 [35] Yang L, Hou X, Xia B. A complete algorithm for automated discovering of a class of inequality-type theorems. Sci China Ser F, 2001, 44: 33-49 [36] Yang L, Xia B. Real solution classifications of parametric semi-algebraic systems//Dolzmann A, Seidl A, Sturm T, Ed. Algorithmic Algebra and Logic - Proceedings of the A3L 2005. Norderstedt: Herstellung und Verlag, 2005: 281-289 [37] Lazard D, Rouillier F. Solving parametric polynomial systems. J Symbolic Comput, 2007, 42: 636-667 [38] Wang D. Computational polynomial algebra and its biological applications//Anai H, Horimoto K, Ed. Proceedings of the First International Conference on Algebraic Biology (AB 2005). Tokyo: Universal Academy Press, Inc, 2005: 127-137 [39] Miller R, Michel A. Ordinary Differential Equations. New York: Academic Press, 1982 [40] Liénard A, Chipart M. Sur le signe de la partie réelle des racines d’une équation algébrique. J Math Pure Appl, 1914, 10: 291-346 [41] Niu W, Wang D. Algebraic approaches to stability analysis of biological systems. Math Comput Sci, 2008, 1: 507-539 [42] Jirstrand M. Nonlinear control system design by quantifier elimination. J Symbolic Comput, 1997, 24: 137-152 [43] She Z, Xia B, Xiao R, et al. A semi-algebraic approach for asymptotic stability analysis. Nonlinear Anal, 2009, 3: 588-596 [44] She Z, Li H, Xue B, et al. Discovering polynomial Lyapunov functions for continuous dynamical systems. J Symbolic Comput, 2013, 58: 41-63 [45] Niu W, Wang D. Algebraic analysis of stability and bifurcation of a self-assembling micelle system. Appl Math Comput, 2012, 219: 108-121 [46] Khibnik A. LINLBF: A program for continuation and bifurcation analysis of equilibria up to codimension three//Roose D, Ed. Continuation and Bifurcation: Numerical Techniques and Applications. Norwell, MA: Kluwer Academic Publishers, 1990: 283-296 [47] Guckenheimer J, Myers M, Sturmfels B. Computing Hopf bifurcation I. SIAM J Numer Anal, 1997, 34: 1-21 [48] Guckenheimer J, Myers M. Computing Hopf bifurcations. II: Three examples from neurophysiology. SIAM J Sci Comput, 1996, 17: 1-27 [49] Moore G, Garrett T, Spence A. The numerical detection of Hopf bifurcation points//Roose D, Ed. Continuation and Bifurcation: Numerical Techniques and Applications. Norwell, MA: Kluwer Academic Publishers, 1990: 227-246 [50] Roose D. An algorithm for the computation of Hopf bifurcation points in comparison with other methods. J Comput Appl Math, 1985, 12: 517-529 [51] Liu W. Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl, 1994, 182: 250-256 [52] El Kahoui M, Weber A. Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J Symbolic Comput, 2000, 30: 161-179 [53] Shahruz S, Kalkin D. Limit cycle behavior in three or higher dimensional nonlinear systems: The Lotka- Volterra example//Dieulot J, Richard J, Ed. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2001: 379-386 [54] Kuznetsov Y. Elements of Applied Bifurcation Theory. New York: Springer-Verlag, 2004 [55] Chow S-N, Hale J. Methods of Bifurcation Theory. New York: Springer, 1982 [56] Govaerts W, Guckenheimer J, Khibnik A. Defining functions for multiple Hopf bifurcations. SIAM J Numer Anal, 1997, 34: 1269-1288 [57] Liapunov A. Probléme Général de la Stabilité du Mouvement. New Jersey: Princeton University Press, 1947 [58] Giné J, Santallusia X. Implementation of a new algorithm of computation of the Poincaré-Liapunov constants. J Comput Appl Math, 2004, 166: 465-476 [59] Lynch S. Symbolic computation of Lyapunov quantities and the second part of Hilbert’s sixteenth problem//Wang D, Zheng Z, Ed. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005: 1-22 [60] Yu P, Chen G. Computation of focus values with applications. Nonlinear Dyn, 2008, 51: 409-427 [61] Shi S. A method of constructing cycles without contact around a weak focus. J Differential Equations, 1981, 41: 301-312 [62] Giné J. On some open problems in planar differential systems and Hilbert’s 16th problem. Chaos Solitons & Fractals, 2007, 31: 1118-1134 [63] Żoladek H. On certain generalization of the Bautin’s theorem. Nonlinearity, 1994, 7: 273-279 [64] Żoladek H. The classification of reversible cubic systems with center. Topol Methods Nonlinear Anal, 1994, 4: 79-136 [65] Dulac H. Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un center. Bull Sci Math, 1908, 32: 230-252 [66] Bautin N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat Sb, 1952, 30: 181-196(in Russian); Amer Math Soc Transl, 1954, 100: 397-413 [67] Sibirskii K. On the number of limit cycles in the neighbourhood of a singular point. Differential Equations, 1965, 1: 36-47 [68] Kukles I. Sur quelques cas de distinction entre un foyer et un centre. Dokl Akad Nauk SSSR, 1944, 42: 208-211 [69] Cherkas L. Conditions for the equation $yy'=\sum\limits_{i=0}^3p_i(x)y^i$ to have a center. Differentsial’nye Uravneniya, 1978, 14: 1594-1600 [70] Wang D. Polynomial systems from certain differential equations. J Symbolic Comput, 1999, 28: 303-315 [71] Sadovskii A. Solutions of the center and focus problem for a cubic system of nonlinear oscillations. Differential Equations, 1997, 33: 236-244 [72] Wang D. An elimination method for polynomial systems. J Symbolic Comput, 1993, 16: 83-114 [73] Lu Z, Ma S. Centers, foci, and limit cycles for polynomial differential systems//Gao X-S, Wang D, Ed. Mathematics Mechanization and Applications. London: Academic Press, 2000: 365-387 [74] Giné J. Center conditions for generalized polynomial Kukles systems. Commun Pur Appl Anal, 2017, 16: 417-425 [75] Chavarriga J, Giné J. Integrability of a linear center perturbed by fourth degree homogeneous polynomial. Publ Mat, 1996, 40: 21-39 [76] Chavarriga J, Giné J. Integrability of a linear center perturbed by fifth degree homogeneous polynomial.Publ Mat, 1997, 41: 335-356 [77] Giné J, Llibre J, Valls C. Centers for the Kukles homogeneous systems with odd degree. Bull London Math Soc, 2015, 47: 315-324 [78] Giné J, Llibre J, Valls C. Centers for the Kukles homogeneous systems with even degree. J Appl Anal Comput, 2017, 7: 1534-1548 [79] Schlomiuk D. Algebraic particular integrals, integrability and the problem of center. Trans Am Math Soc, 1993, 338: 799-841 [80] Edneral V, Mahdi A, Romanovski V, et al. The center problem on a center manifold in R3. Nonlinear Anal, 2012, 75: 2614-2622 [81] Mahdi A. The center problem for the third-order ODEs. Internat J Bifur Chaos, 2013, 23: 1350078-1-11 [82] Mahdi A, Pessoa C, Hauenstein J. A hybrid symbolic-numerical approach to the center-focus problem. J Symbolic Comput, 2017, 82: 57-73 [83] Romanovski V, Xia Y, Zhang X. Varieties of local integrability of analytic differential systems and their applications. J. Differential Equations, 2014, 257: 3079-3101 [84] Conti R. Centers of planar polynomial systems. A review. Le Matematiche, 1998, 53: 207-240 [85] Chavarriga J, Sabatini M. A survey of isochronous centers. Qual Theory Dyn Syst, 1999, 1: 1-70 [86] Hilbert D. Mathematical problems. Bull Amer Math Soc, 1902, 8: 437-479 [87] Dulac H. Sur les cycles limites. Bull Soc Math France, 1923, 51: 45-188 [88] Otrokov N. On the number of limit cycles of a differential equation in the neighborhood of a singular point. Mat Sbornik, 1954, 34: 127-144 [89] Écalle J. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualitiées Math. Paris: Hermann, 1992 [90] Ilyashenko Yu. Finiteness theorems for limit cycles. Uspekhi Mat Nauk, 1990, 2: 143-200(Russian); English transl Russian Math Surveys 1990, 45: 129-203 [91] Christopher C. Estimating limit cycle bifurcations from centers//Wang D, Zheng Z, Ed. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005: 23-35 [92] Chen L, Wang M. The relative position, and the number, of limit cycles of a quadratic differential system. Acta Math Sinica, 1979, 22: 751-758 [93] Li C, Liu C, Yang J. A cubic system with thirteen limit cycles. J Differential Equations, 2009, 246: 3609-3619 [94] Bamon R. The solution of Dulac’s problem for quadratic vector fields. Ann Acad Bros Cienc, 1985, 57: 111-142 [95] Christopher C, Lloyd N. Polynomial systems: A lower bound for the Hilbert numbers. Proc Royal Soc London Ser A, 1995, 450: 219-224 [96] Han M, Li J. Lower bounds for the Hilbert number of polynomial systems. J Differential Equations, 2012, 252: 3278-3304 [97] Han M, Shang D, Wang Z, et al. Bifurcation of limit cycles in a 4th-order near-Hamiltonian polynomial systems. Internat J Bifur Chaos, 2007, 11: 4117-4144 [98] Sun X, Han M. On the number of limit cycles of a Z4-equivariant quintic near-Hamiltonian system. Acta Math Sin, Engl Ser, 2015, 31: 1805-1824 [99] Wu Y, Wang X, Tian L. Bifurcations of limit cycles in a Z4-equivariant quintic planar vector field. Acta Math Sin, Engl Ser, 2010, 26: 779-798 [100] Wang S, Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos Solitons & Fractals, 2005, 26: 1317-1335 [101] Li J. Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Internat J Bifur Chaos, 2003, 13: 47-106 [102] Wang D. A class of cubic differential systems with 6-tuple focus. J Differential Equations, 1990, 87: 305-315 [103] Li J, Bai J. The cyclicity of multiple Hopf bifurcation in planar cubic differential systems: M(3) ≥ 7. Science Bulletin, 1990, 23: 2016-2017 [104] James E, Lloyd N. A cubic system with eight small-amplitude limit cycles. IMA J Appl Math, 1991, 47: 163-171 [105] Ning S, Ma S, Kwek K, et al. A cubic system with eight small-amplitude limit cycles. Appl Math Lett, 1994, 7: 23-27 [106] Yu P, Corless R. Symbolic computation of limit cycles associated with Hilbert’s 16th problem. Commun Nonlinear Sci Numer Simul, 2009, 14: 4041-4056 [107] Zhang W, Hou X, Zeng Z. Weak centers and bifurcation of critical periods in reversible cubic systems. Comput Math Appl, 2000, 40: 771-782 [108] Lu Z, Luo Y. Two limit cycles in three-dimensional Lotka-Volterra systems. Comput Math Appl, 2002, 44: 51-66 [109] Wang D, Zheng Z. Differential Equations with Symbolic Computation. Basel: Birkhäuser, 2005 [110] Chen C, Moreno Maza M. Semi-algebraic description of the equilibria of dynamical systems//Gerdt V, Koepf W, Mayr E, et al, Ed. Computer Algebra in Scientific Computing. Heidelberg: Springer, 2011: 101-125 [111] Lloyd N, Pearson J. A cubic differential system with nine limit cycles. J Appl Anal Comput, 2012, 2: 293-304 [112] Yu P, Tian Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun Nonlinear Sci Numer Simul, 2014, 19: 2690-2705 [113] Levandovskyy V, Romanovski V, Shafer D. The cyclicity of a cubic system with nonradical Bautin ideal. J Differential Equations, 2009, 246: 1274-1287 [114] Han M, Romanovski V. Estimating the number of limit cycles in polynomial systems. J Math Anal Appl, 2010, 368: 491-497 [115] Han M, Yu P. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. New York: Springer, 2012 [116] Han M, Yang J, Yu P. Hopf bifurcations for near-Hamiltonian systems. Int J Bifurcation Chaos, 2009, 19: 4117-4130 [117] Llibre J, Zhang X. Hopf bifurcation in higher dimensional differential systems via the averaging method. Pacific J Math, 2009, 240: 321-341 [118] Llibre J, Valls C. Hopf bifurcation for some analytic differential systems in R3 via averaging theory. Discrete Contin Dyn Syst, 2011, 30: 779-790 [119] Huang B, Yap C. An algorithmic approach to small limit cycles of nonlinear differential systems: The averaging method revisited. J Symbolic Comput, 2021. DOI: 10.1016/j.jsc.2020.09.001 [120] Yu P. Computation of normal forms via a perturbation technique. J Sound Vib, 1998, 211: 19-38 [121] Bi Q, Yu P. Symbolic computation of normal forms for semi-simple cases. J Comput Appl Math, 1999, 102: 195-220 [122] Zeng B, Yu P. Analysis of zero-Hopf bifurcation in two Rössler systems using normal form theory. Internat J Bifur Chaos, 2020, 30: 2030050-1-14 [123] Tian Y, Yu P. An explicit recursive formula for computing the normal forms associated with semisimple cases. Commun Nonlinear Sci Numer Simul, 2014, 19: 2294-2308 [124] Llibre J, Makhlouf A, Badi S. 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete Contin Dyn Syst, 2009, 25: 1287-1295 [125] Chow S-N, Mallet-Paret J. Hopf bifurcation and the method of averaging//Marsden J, McCracken M, Ed. The Hopf Bifurcation and Its Applications. New York: Springer-Verlag, 1976: 151-162 [126] Llibre J, Novaes D, Teixeira M. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27: 563-583 [127] Huang B, Wang D. Zero-Hopf bifurcation of limit cycles in certain differential systems. 2022, https://arxiv.org/abs/2205.14450 [128] Sanders J, Verhulst F, Murdock J. Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences. New York: Springer, 2007 [129] Llibre J, Moeckel R, Simó C. Central Configuration, Periodic Oribits, and Hamiltonian Systems. Advanced Courses in Mathematics-CRM Barcelona, Basel: Birkhäuser, 2015 [130] Pi D, Zhang X. Limit cycles of differential systems via the averaging method. Canad Appl Math Quart, 2009, 7: 243-269 [131] Barreira L, Llibre J, Valls C. Limit cycles bifurcating from a zero-Hopf singularity in arbitrary dimension. Nonlinear Dynam, 2018, 92: 1159-1166 [132] Blows T, Perko L. Bifurcation of limit cycles from centers and separatrix cycles of planar analytic systems, SIAM Rev, 1994, 36: 341-376 [133] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.New York: Springer, 1993 [134] Viano M, Llibre J, Giacomini H. Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor. Nonlinear Anal, 2002, 48: 117-136 [135] Han M, Romanovski V, Zhang X. Equivalence of the Melnikov function method and the averaging method. Qual Theory Dyn Syst, 2016, 15: 471-479 [136] Arnold I. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct Anal Appl, 1977, 11: 85-92 [137] Christopher C, Li C. Limit Cycles of Differential Equuations. Advanced Courses in Mathematics, CRM Barcelona, Basel: Birkhäuser, 2007 [138] Cveticanin L. Strong Nonlinear Oscillators. Cham: Springer, 2018 [139] Dumortier F, Li C. Perturbations from an elliptic Hamiltonian of degree four: (I) saddle loop and two saddle cycle. J Differential Equations, 2001, 176: 114-157; (II) cuspidal loop. J Differential Equations, 2001, 175: 209-243; (III) global center. J Differential Equations, 2003, 188: 473-511; (IV) figure eightloop. J Differential Equations, 2003, 88: 512-514 [140] Asheghi R, Zangeneh H. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-gure loop. Nonlinear Anal, 2008, 68: 2957-2976 [141] Asheghi R, Zangeneh H. Bifurcations of limit cycles for a quintic Hamiltonian system with a double cuspidal loop. Comput Math Appl, 2010, 59: 1409-1418 [142] Zhao L. The perturbations of a class of hyper-elliptic Hamilton systems with a double homoclinic loop through a nilpotent saddle. Nonlinear Anal, 2014, 95: 374-387 [143] Grau M, Mañosas F, Villadelprat J. A Chebyshev criterion for Abelian integrals. Transl Am Math Soc, 2011, 363: 109-129 [144] Mañosas F, Villadelprat J. Bounding the number of zeros of certain Abelian integrals. J Differential Equations, 2011, 251: 1656-1669 [145] Wang J, Xiao D. On the number of limit cycles in samll perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle. J Differential Equations, 2011, 250: 2227-2243 [146] Atabaigi A, Zangeneh H. Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp. J Appl Anal Comput, 2011, 1: 299-313 [147] Wang J. Bound the number of limit cycles bifurcating from center of polynomial Hamiltonian system via interval analysis. Chaos Solitons & Fractals, 2016, 87: 30-38 [148] Hu Y, Niu W, Huang B. Bounding the number of limit cycles for parametric Liénard systems using symbolic computation methods. Commun Nonlinear Sci Numer Simul, 2021, 96: 105716-1-16 [149] Sun X, Xi H, Zangeneh R, Kazemi R. Bifurcation of limit cycles in small perturbation of a class of Liénard systems. Internat J Bifur Chaos, 2014, 24: 1450004-1-23 [150] Kazemi R, Zangeneh H. Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles. J Appl Anal Comput, 2012, 2: 395-413 [151] Sun X, Zhao L. Perturbations of a class of hyper-elliptic Hamiltonian systems of degree seven with nilpotent singular points. Appl Math Comput, 2016, 289: 194-203 [152] Sun X, Yu P. Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4. J Differential Equations, 2019, 267: 7369-7384 [153] Smith J. Mathematical Ideas in Biology. London: Cambridge University Press, 1968 [154] Smith J. Evolution and the Theory of Games. London: Cambridge University Press, 1982 [155] May R. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459-467 [156] Niu W. Qualitative Analysis of Biological Systems Using Algebraic Methods [D]. Paris: Université Paris VI, 2011 [157] Niu W, Wang D. Algebraic analysis of bifurcation and limit cycles for biological systems//Horimoto K, Regensburger G, Rosenkranz M, et al, Ed. Proceedings of the Third International Conference on Algebraic Biology. Heidelberg: Springer-Verlag, 2008: 156-171 [158] Errami H, Eiswirth M, Grigoriev D, et al. Efficient methods to compute Hopf bifurcations in chemical reaction networks using reaction coordinates//Gerdt V, Koepf W, Mayr E, et al, Ed. Computer Algebra in Scientific Computing. Heidelberg: Springer-Verlag, 2013: 88-99 [159] Bradford R, Davenport J, England M, et al. Identifying the parametric occurrence of multiple steady states for some biological networks. J Symbolic Comput, 2020, 98: 84-119 [160] Dickenstein A, Millán M, Shiu A, et al. Multistationarity in structured reaction networks. B Math Biol,2019, 81: 1527-1581 [161] Mou C, Ju W. Sparse triangular decomposition for computing equilibria of biological dynamic systems based on chordal graphs. IEEE/ACM Trans Comput Biol Bioinform, 2022. DOI: 10.1109/TCBB.2022.3156759 [162] Gatermann K, Huber B. A family of sparse polynomial systems arising in chemical reaction systems. J Symbolic Comput, 2022, 33: 275-305 [163] Gatermann K. Counting stable solutions of sparse polynomial systems in chemistry//Green E, Hosten S, Laubenbacher R, et al, Ed. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering. Providence, RI: American Mathematical Society, 2001: 53-70 [164] Gatermann K, Eiswirth M, Sensse A. Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J Symbolic Comput, 2005, 40: 1361-1382 [165] Ferrell J, Machleder E. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 1998, 280: 895-898 [166] Angeli D, Ferrell J, Sontag E. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Nat Acad Sci, 2004, 101: 1822-1827 [167] Liu L, Lu Z, Wang D. The structure of LaSalle’s invariant set for Lotka-Volterra systems. Sci China (Ser A), 1991, 34: 783-790 [168] Lu Z. Computer aided proof for the global stability of Lotka-Volterra systems. Comput Math Appl, 1996, 31: 49-59 [169] Li B, Shen Y, Li B. Quasi-Steady-State laws in enzyme kinetics. J Phys Chem A, 2008, 112: 2311-2321 [170] Li B, Li B. Quasi-Steady-State laws in reversible model of enzyme kinetics. J Math Chem, 2013, 51: 2668-2686 [171] Boulier F, Lemaire F, Sedoglavic A, et al. Towards an automated reduction method for polynomial ODE models in cellular biology. Math Comput Sci, 2009, 2: 443-464 [172] Boulier F, Lazard D, Ollivier F, et al. Representation for the radical of a finitely generated differential ideal//Levelt A, Ed. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation. New York: ACM Press, 1995: 158-166 [173] Boulier F, Lefranc M, Lemaire F, et al. Model reduction of chemical reaction systems using elimination. Math Comput Sci, 2011, 5: 289-301 [174] Boulier F, Lefranc M, Lemaire F, et al. Applying a rigorous Quasi-Steady State Approximation method for proving the absence of oscillations in models of genetic circuits//Horimoto K, Regensburger G, Ed. Proceedings of the Third International Conference on Algebraic Biology. Heidelberg: Springer-Verlag, 2008: 56-64 [175] Wang D. Algebraic stability criteria and symbolic derivation of stability conditions for feedback control systems. Int J of Control, 2012, 85: 1414-1421 [176] Li X, Wang D. Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification. J Math Econ, 2014, 54: 48-58 [177] Huang B, Niu W. Analysis of snapback repellers using methods of symbolic computation. Int J Bifurcation Chaos, 2019, 29: 1950054-1-13 [178] Quadrat A, Zerz E. Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in Delays and Dynamics. Cham: Springer, 2020 |
[1] | 马文秀. LUMP AND INTERACTION SOLUTIONS TO LINEAR(4+1)-DIMENSIONAL PDES[J]. 数学物理学报(英文版), 2019, 39(2): 498-508. |
[2] | 李洪波. SYMBOLIC VERSOR COMPRESSION ALGORITHM[J]. 数学物理学报(英文版), 2009, 29(4): 991-1004. |
[3] | 刘振海; E. Sáez; I. Szántó. LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE[J]. 数学物理学报(英文版), 2008, 28(4): 865-869. |
[4] | 李志斌, 吴是静. EXACT SOLUTIONS A COUPLED NONLINEAR REACTION-DIFFUSION SYSTEM[J]. 数学物理学报(英文版), 1996, 16(S1): 139-142. |
|