[1] Behrend K. Donaldson-Thomas invariants via microlocal geometry. Ann of Math, 2009, 170: 1307-1338 [2] Behrend K, Bryan J, Szendroi B. Motivic degree zero Donaldson-Thomas invariants. Invent Math, 2013, 192(1): 111-160 [3] Behrend K, Fantechi B. The intrinsic normal cone. Invent Math, 1997, 128: 45-88 [4] Bussi V, Joyce D, Meinhardt S. On motivic vanishing cycles of critical loci. J Alg Geo, 2019, 28(3): 405-438 [5] Chang H, Li J. Semi-perfect obstruction theory and DT invariants of derived objects. Communications in Analysis and Geometry, 2011, 19(4): 807-830 [6] Costello K. Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl Math Quart, 2013, 9: 73-165 [7] Davison B. The critical CoHA of a self dual quiver with potential. arXiv:1311.7172 [8] Davison B, Meinhardt S. The motivic Donaldson-Thomas invariants of (-2)-curves. Algebra and Number Theory, 2017, 11(6): 1243-1286 [9] Göttsche L. On the motive of the Hilbert scheme of points on a surface. Math Res Lett, 2001, 8: 613-627 [10] Göttsche L, Kool M. Virtual refinements of the Vafa-Witten formula. arXiv:1703.07196 [11] Graber T, Pandharipande R. Localization of virtual classes. Invent Math, 1999, 135: 487-518 [12] Gusein-Zade S M, Luengo I, Melle-Hernández A. Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Mich Math J, 2006, 54: 353-359 [13] Jiang Y. Motivic Milnor fiber of cyclic L-infinity algebras. Acta Mathematica Sinica, 2017, 33(7): 933-950 [14] Jiang Y. The moduli space of stable coherent sheaves via non-archimedean geometry. arXiv:1703.00497 [15] Jiang Y. Note on MacPherson’s local Euler obstruction. Michigan Mathematical Journal, 2019, 68: 227-250 [16] Jiang Y. Symmetric semi-perfect obstruction theory revisited. Acta Mathematica Sinica, to appear, arXiv:1811.08480 [17] Jiang Y. Counting twisted sheaves and S-duality. Adv Math, 2022, 400: Art 108332 [18] Jiang Y, Thomas R. Virtual signed Euler characteristics. Journal of Algebraic Geometry, 2017, 26: 379-397 [19] Jiang Y, Kundu P. The Tanaka-Thomas’s Vafa-Witten invariants for surface Deligne-Mumford stacks. Pure and Applied Math Quarterly, 2021, 17(1): 503-573 [20] Jiang Y, Tseng H -H. A proof of all rank S-duality conjecture for K3 surfaces. arXiv:2003.09562 [21] Jiang Y, Kool M. Twisted sheaves and SU(r)/Zr Vafa-Witten theory. Mathematische Annalen, 2022, 382: 719-743 [22] Joyce D. A classical model for derived critical locus. Journal of Differential Geometry, 2015, 101: 289-367 [23] Joyce D, Upmeier M. Orientation data for moduli spaces of coherent sheaves over Calabi-Yau 3-folds. Adv Math, 2021, 381: Art 107627 [24] Kiem Y -H, Li J. Localizing virtual cycles by cosections. J Amer Math Soc, 2013, 26: 1025-1050 [25] Li J, Tian G. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J Amer Math Soc, 1998, 11: 119-174 [26] Looijenga E. Motivic measures. Asterisque, 2002, 276: 267-297 [27] Maulik D. Motivic residues and Donaldson-Thomas theory. In preparation [28] Maulik D, Toda Y. Gopakumar-Vafa invariants via vanishing cycles. Invent Math, 2018, 213: 1017-1097 [29] Maulik D, Thomas R P. Sheaf counting on local K3 surfaces. Pure Appl Math Quar, 2018, 14(3/4): 419-441 [30] Nekrasov N, Okounkov A. Membranes and Sheaves. Alg Geo, 2016, 3(3): 320-369 [31] Nicaise J. A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Math Ann, 2008, 343(2): 285-349 [32] Nicaise J, Payne S. A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory. Duke Math J, 2019, 168(10): 1843-1886 [33] Pantev T, Toën B, Vaquie M, Vezzosi G. Shifted symplectic structures. Publ Math IHES, 2013, 117: 271-328 [34] Tanaka Y, Thomas R. Vafa-Witten invariants for projective surfaces I: stable case. J Alg Geom, 2020, 29: 603-668 [35] Tanaka Y, Thomas R. Vafa-Witten invariants for projective surfaces II: semistable case. Pure Appl Math Quart, 2017, 13: 517-562 [36] Thomas R P. Equivariant K-theory and refined Vafa-Witten invariants. Comm Math Phys, 2020, 378(2): 1451-1500 [37] Toën B, Vezzosi G. Homotopical algebraic geometry II: Geometric stacks and applications. Mem Amer Math Soc, 2008, 193(902) [38] Vafa C, Witten E. A strong coupling test of S-duality. Nucl Phys, 1994, 431B: 3-77 [39] Yoshioka K. Some examples of Mukai’s reflections on K3 surfaces. J Reine Angew Math, 1999, 515: 97-123 |