[1] Dumitriu I. Eigenvalue Statistics for Beta-Ensembles [D]. Massachusetts Institute of Technology, 2003 [2] Dumitriu I, Edelman A. Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J Math Phys, 2006, 47(6): 063302 [3] Dumitriu I, Edelman A. Matrix models for beta ensembles. J Math Phys, 2002, 43(11): 5830–5847 [4] Dumitriu I, Koev P. Distributions of the extreme eigenvalues of beta-Jacobi random matrices. SIAM J Matrix Anal Appl, 2008, 30(1): 1–6 [5] Dumitriu I, Paquette E. Global fluctuations for liner statistics of β-Jacobi ensembles. Random Matrices: Theory Appl, 2012, 1(4): 1250013, 60 [6] Edelman A, Koev P. Eigenvalue distributions of beta-Wishart matrices. Random Matrices: Theory Appl, 2014, 3(2): 1450009 [7] Edelman A, Sutton B D. The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found Comput Math, 2008, 8: 259–285 [8] Gerŝgorin S A. Uber die abgrenzung der eigenwerte einer matrix. Nauk SSSR Ser Fiz-Mat, 1931, 6: 749–754 [9] Jiang T. Limit theorems for beta-Jacobi ensembles. Bernoulli, 2013, 19(3): 1028–1046 [10] Killip R, Nenciu I. Matrix models for circular ensembles. Int Math Res Not, 2004, 50: 2665–2701 [11] Killip R. Gaussian fluctuations for β ensembles. Int Math Res Not, 2008, 2008: Art rnn007 [12] Ma Y, Shen X. Approximation of beta-Jocobi ensembles by beta-Laguerre ensembles. To appear at Front Math China, 2022 [13] Silverstein J W. The Smallest eigenvalue of a large dimensional Wishart matrix. Ann Probab, 1985, 13: 1364–1368 [14] Trinh K. On spectral measures of random Jacobi matrices. Osaka J Math, 2018, 55: 595–617 [15] Wishart J. The generalized product moment distribution in samples from a normal multivariate population. Biometrika A, 1928, 20: 32–43 |