[1] Cont R, Tankov P. Financial Modeling with Jump Processes. Financ Math Ser. Chapman and Hall/CRC:Boca Raton, 2004 [2] Devillanova G, Carlo Marano G. A free fractional viscous oscillator as a forced standard damped vibration. Fract Cal Appl Anal, 2016, 19(2):319-356 [3] Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94:156-170 [4] Molica Bisci G, Radulescu V, Servadei R. Variational methods for nonlocal fractional problems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2016 [5] Majda A, Tabak E. A two-dimensional model for quasigeostrophic flow:comparison with the two-dimensional Euler flow. Physica D, 1996, 98(2/4):515-522 [6] Valdinoci E. From the long jump random walk to the fractional Laplacian. Bol Soc Esp Mat Apl, 2009, 49:33-44 [7] Vlahos L, Isliker H, Kominis Y, et al. Normal and a nomalous diffusion:atutorial//Order and Chaos. Patras University Press, 2008 [8] Nezza E D, Palatucci G, Valdinoci E, Hitchhikers guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573 [9] Servadei R, Valdinoci E. Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev Mat Iberoam, 2013, 29(3):1091-1126 [10] Servadei R, Valdinoci E. Variational methods for the non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33(5):2105-2137 [11] Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4):437-477 [12] Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122(2):519-543 [13] Ambrosetti A, Garcia J, Peral I. Multiplicity reults for some nonlinear elliptic equations. J Func Anal, 1996, 137(1):219-242 [14] Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities. Proc Amer Math Soc, 1995, 123(11):3555-3561 [15] Brown K J, Wu T. A fibering map approach to a semilinear elliptic boundary value problem. Elec J Differ Equ, 2007, 2007(69):1-9 [16] Garcia J, Peral I. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323(2):877-895 [17] Lin H. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent. Nonlinear Anal, 2012, 75(4):2660-2671 [18] Lin H. Multiple positive solutions for semilinear elliptic systems. J Math Anal Appl, 2012, 391(1):107-118 [19] Wu T. On semilinear elliptic equations involving concave-convex nonlinearlities and sign-changing weight function. J Math Anal Appl, 2006, 318(1):253-270 [20] Wu T. Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight. J Differ Equ, 2010, 249(7):1549-1578 [21] Fiscella A, Servadei R, Valdinoci E. Density properties for fractional Sobolev spaces. Ann Acad Sci Fenn Math, 2015, 40(1):235-253 [22] Ros-Oton X, Serra J. The Pohozaev identity for the fractional Laplacian. Arch Ration Mech Anal, 2014, 213(2):587-628 [23] Servadei R, Valdinoci E. A Brezis-Nirenberg result for non-local critical equations in low dimension. Comm Pure Appl Anal, 2013, 12(6):2445-2464 [24] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Tran Amer Math Soc, 2015, 367(1):67-102 [25] Barriosa B, Colorado E, Servadeid R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann I H Poincaré-AN, 2015, 32(4):875-900 [26] Barrios B, Colorado E, de Pablo A, et al. On some critical problems for the fractional Laplacian operator. J Differ Equ, 2012, 252(11):6133-6162 [27] Cabré X, Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224(5):2052-2093 [28] Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differ Equ, 2011, 36(1/2):21-41 [29] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60(1):67-112 [30] Tarantello G. On nonhomogeneous elliptic equations invoving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Lineairé, 1992, 9(3):281-304 [31] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47(2):324-353 [32] Bahri A, Li Y. On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN. Rev Mat Iberoam, 1990, 6(1):1-15 |