[1] |
Atiyah M F. Elliptic Operators and Compact Groups. Lecture Notes in Mathematics, Vol 401. Berlin:Springer-Verlag, 1974
|
[2] |
Berline N, Getzler E, Vergne M. Heat Kernels and Dirac Operators. Grundl Math Wiss Band 298. Berlin:Springer-Verlag, 1992
|
[3] |
Bismut J -M, Lebeau G. Complex immersions and Quillen metrics. Inst Hautes Études Sci Publ Math, 1991, 74:1-298
|
[4] |
Guillemin V, Sternberg S. Geometric quantization and multiplicities of group representations. Invent Math, 1982, 67(3):515-538
|
[5] |
Hochs P, Mathai V. Geometric quantization and families of inner products. Adv Math, 2015, 282:362-426
|
[6] |
Hochs P, Song Y. Equivariant indices of Spin-Dirac operators for proper moment maps. Duke Math J, 2017, 166:1125-1178
|
[7] |
Hsiao C -Y, Ma X, Marinescu G. Geometric quantization on CR manifolds. arXiv:1906.05627
|
[8] |
Kostant B. Quantization and unitary representations//Lect Notes in Math, 170. Springer, 1970:87-207
|
[9] |
Ma X. Geometric quantization on Kähler and symplectic manifolds//Proceedings of the International Congress of Mathematicians, Volume II (New Delhi). Hindustan Book Agency, 2010:785-810
|
[10] |
Ma X, Marinescu G. Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, Vol 254. Boston, MA:Birkhäuser Boston Inc, 2007, 422 pp
|
[11] |
Ma X, Zhang W. Geometric quantization for proper moment maps. C R Math Acad Sci Paris, 2009, 347:389-394
|
[12] |
Ma X, Zhang W. Geometric quantization for proper moment maps:the Vergne conjecture. Acta Math, 2014, 212(1):11-57
|
[13] |
Mathai V, Zhang W. Geometric quantization for proper actions. Adv Math, 2010, 225:1224-1247
|
[14] |
Meinrenken E. On Riemann-Roch formulas for multiplicities. J Amer Math Soc, 1996, 9(2):373-389
|
[15] |
Meinrenken E. Symplectic surgery and the Spinc-Dirac operator. Adv Math, 1998, 134(2):240-277
|
[16] |
Meinrenken E, Sjamaar R. Singular reduction and quantization. Topology, 1999, 38:699-762
|
[17] |
Paradan P -É. Localization of the Riemann-Roch character. J Funct Anal, 2001, 187(2):442-509
|
[18] |
Paradan P -É. Spinc-quantization and the K-multiplicities of the discrete series. Ann Sci Ecole Norm Sup (4), 2003, 36(5):805-845
|
[19] |
Paradan P -É. Formal geometric quantization II. Pacific J Math, 2011, 253:169-211
|
[20] |
Paradan P -É, Vergne M. Equivariant Dirac operators and differentiable geometric invariant theory. Acta Math, 2017, 218:137-199
|
[21] |
Souriau J -M. Structure des Syst`emes Dynamiques. Maîtrises de Mathématiques. Paris:Dunod, 1970
|
[22] |
Tian Y, Zhang W. An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg. Invent Math, 1998, 132(2):229-259
|
[23] |
Tian Y, Zhang W. Quantization formula for symplectic manifolds with boundary. Geom Funct Anal, 1999, 9(3):596-640
|
[24] |
Vergne M. Multiplicities formula for geometric quantization. I, II. Duke Math J, 1996, 82(1):143-179, 181-194
|
[25] |
Vergne M. Quantification géométrique et réduction symplectique. Astérisque, 2002, (282):249-278
|
[26] |
Vergne M. Applications of equivariant cohomology//International Congress of Mathematicians. Vol I. Zürich:Eur Math Soc, 2007:635-664
|
[27] |
Zhang W. Holomorphic quantization formula in singular reduction. Commun Contemp Math, 1999, 1(3):281-293
|