[1] Cheng G Z, Fang X, Wang Z P, Yu J Y. The hyper-singular cousin of the Bergman projection. Trans Amer Math Soc, 2017, 369(12):8643-8662 [2] Choe B R, Koo H, Nam K. Optimal norm estimate of operators related to the harmonic Bergman projection on the unit ball. Tohoku Math J, 2010, 62(3):357-374 [3] Dostanić M. Two sided norm estimate of the Bergman projection on Lp spaces. Czechoslovak Math J, 2008, 58(133)(2):569-575 [4] Dostanić M. Norm of Berezin transform on Lp spaces. J Anal Math, 2008, 104:13-23 [5] Dostanić M. Integral operators induced by Bergman type kernels in the half plane. Asymptot Anal, 2010, 67(3/4):217-228 [6] Erdélyi A, Magnus W, Oberhettinger F, Tricomi F G. Higher Transcendental Functions, Vol I. New York:McGraw-Hill, 1953 [7] Forelli F, Rudin W. Projections on spaces of holomorphic functions in balls. Indiana Univ Math J, 1974, 24:593-602 [8] Hou X Y, Xu Y. Norm of a Bloch-type projection. Complex Anal Oper Theory, 2019, 13(5):2269-2276 [9] Kalaj D, Marković M. Norm of the Bergman projection. Math Scand, 2014, 115(1):143-160 [10] Kalaj D, Vujadinović D. Norm of the Bergman projection onto the Bloch space. J Operator Theory, 2015, 73(1):113-126 [11] Korányi A. The Poisson integral for generalized half-planes and bounded symmetric domains. Ann Math, 1965, 82:332-350 [12] Korányi A, Stein E M. Fatou's theorem for generalized half-planes. Ann Scuola Norm Sup Pisa,1968, 22:107-112 [13] Korányi A, Vági S. Singular integrals on homogeneous spaces and some problems of classical analysis. Ann Scuola Norm Sup Pisa, 1971, 25:575-648 [14] Korányi A, Wolf J A. Realization of hermitian symmetric spaces as generalized half-planes. Ann Math, 1965, 81:265-288 [15] Kures O, Zhu K H. A class of integral operators on the unit ball of $\mathbb{C}^n$. Integr Equ Oper Theory, 2006, 56(1):71-82 [16] Liu C W. Sharp Forelli-Rudin estimates and the norm of the Bergman projection. J Funct Anal, 2015, 268(2):255-277 [17] Liu C W. Norm estimates for the Bergman and the Cauchy-Szegö projections over the Siegel upper halfspace. Constr Approx, 2018, 48(3):385-413 [18] Liu C W, Liu Y, Hu P Y, Zhou L F. Two classes of integral operators over the Siegel upper half-space. Complex Anal Oper Theory, 2019, 13(3):685-701 [19] Liu C W, Perälä A, Zhou L F. Two-sided norm estimates for Bergman-type projections with an asymptotically sharp lower bound. Rev Mat Iberoam, 2018, 34(4):1427-1441 [20] Liu C W, Si J J, Hu P Y. Lp-Lq boundedness of Bergman-type operators over the Siegel upper-space. J Math Anal Appl, 2018, 464(2):1203-1212 [21] Liu C W, Zhou L F. Norm of an integral operator related to the harmonic Bergman projection. Integr Equ Oper Theroy. 2011, 69(4):557-566 [22] Liu C W, Zhou L F. On the p-norm of the Berezin transform. Illinois J Math, 2012, 56(2):497-505 [23] Liu C W, Zhou L F. On the p-norm of an integral operator in the half plane. Canad Math Bull, 2013, 56(3):593-601 [24] Marković M. Semi-norms of the Bergman projection. Comput Methods Funct Theory, 2016, 16(1):65-78 [25] Melentijević P. Norm of the Bergman projection onto the Bloch space with $\mathcal {M}$-invariant gradient norm. Ann Acad Sci Fenn Math, 2019, 44(1):211-220 [26] Perälä A. On the optimal constant for the Bergman projection onto the Bloch space. Ann Acad Sci Fenn Math, 2012, 37(1):245-249 [27] Perälä A. Bloch space and the norm of the Bergman projection. Ann Acad Sci Fenn Math, 2013, 38(2):849-853 [28] Sehba B. On the boundedness of the fractional Bergman operators. Abstr Appl Anal, 2017, https://doi.org/10.1155/2017/8363478 [29] Stein E M. Harmonic analysis:real-variable methods, orthogonality, and oscillatory integrals. Princeton, New Jersey:Princeton University Press, 1993 [30] Zhao R H. Generalization of Schur's test and its application to a class of integral operators on the unit ball of $\mathbb{C}^n$. Integr Equ Oper Theroy, 2015, 82(4):519-532 [31] Zhou L F. On the boundedness and the norm of a class of integral operators. Acta Math Sci, 2015, 35B(6):1475-1482 [32] Zhou L F. Norm estimates for weighted Bergman projection on the upper half plane. Complex Anal Oper Theory, 2018, 12(1):217-233 [33] Zhou L F, Lu J. The improvement on the boundedness and norm of a class of integral operators on Lp space. J Funct Spaces, 2015:http://dx.doi.org/10.1155/2015/362681 [34] Zhou L F, Lu J. The Forelli-Rudin type theorem and a class of integral operator related to hypergeometric function (in Chinese). Sci Sin Math, 2019, 49:765-780 [35] Zhu K H. A sharp norm estimate of the Bergman projection on Lp spaces//Bergman Spaces and Related Topics in Complex Analysis. Contemp Math 404. Providence, RI:Amer Math Soc, 2006:195-205 [36] Zhu K H. Operator Theory in Function Spaces. 2nd ed. Providence, RI:Amer Math Soc, 2007 [37] Zhu K H. Analysis on Fock Spaces. Graduate Texts in Mathematics, Vol 263. New York:Springer-Verlag, 2012 |