[1] Algamal Z Y, Lee M H. A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives. SAR and QSAR in Environmental Research, 2017, 28(1):75-90 [2] Bickel P J, Ritov Y, Tsybakov A B. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, 2009, 37(4):1705-1732 [3] Buhlmann P, Van De Geer S. Statistics for High-Dimensional Data:Methods, Theory and Applications. Springer Science & Business Media, 2011 [4] Boucheron S, Lugosi G, Massart P. Concentration Inequalities:A Nonasymptotic Theory of Independence. Oxford University Press, 2013 [5] Bunea F. Honest variable selection in linear and logistic regression models via l(1) and l(1) + l(2) penalization. Electronic Journal of Statistics, 2008, 2:1153-1194 [6] Cox D R. The regression analysis of binary sequences (with discussion). Journal of the Royal Statistical Society:Series B (Methodological), 1958, 20(2):215-232 [7] Dudoit S, Fridlyand J, Speed T P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 2002, 97(457):77-87 [8] Efron B, Hastie T. Computer Age Statistical Inference. Cambridge University Press, 2016 [9] Fan Y, Zhang H, Yan T. Asymptotic theory for differentially private generalized β-models with parameters increasing. Statistics and Its Interface, 2020, 13(3):385-398 [10] Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439):531-537 [11] Guo P, Zeng F, Hu X, et al. Improved variable selection algorithm using a LASSO-type penalty, with an application to assessing hepatitis B infection relevant factors in community residents. PloS One, 2015, 10(7) [12] Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity:the Lasso and Generalizations. CRC Press, 2015 [13] Li W, Lederer J. Tuning parameter calibration for l(1)-regularized logistic regression. Journal of Statistical Planning and Inference, 2019, 202:80-98 [14] Liu C, San Wong H. Structured penalized logistic regression for gene selection in gene expression data analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 16(1):312-321 [15] Kwemou M. Non-asymptotic oracle inequalities for the Lasso and group Lasso in high dimensional logistic model. ESAIM:Probability and Statistics, 2016, 20:309-331 [16] Ma R, Cai T, Li H. Global and simultaneous hypothesis testing for high-dimensional logistic regression models. Journal of the American Statistical Association, 2020:1-15 [17] Park H, Konishi S. Robust logistic regression modelling via the elastic net-type regularization and tuning parameter selection. Journal of Statistical Computation and Simulation, 2016, 86(7):1450-1461 [18] Rigollet P, Hütter J C. High Dimensional Statistics. MIT Open CourseWare. 2019. http://www-math.mit.edu/rigollet/PDFs/RigNotes17.pdf [19] Sur P, Chen Y, Candes E J. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square. Probability Theory and Related Fields, 2019, 175(1/2):487-558 [20] Tutz G. Regression for Categorical Data. Cambridge University Press, 2011 [21] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B (Methodological), 1996, 58(1):267-288 [22] van de Geer, S. A. High-dimensional generalized linear models and the lasso. The Annals of Statistics, 2008, 36(2):614-645 [23] Yang X, Zhang H, Wei H, et al. Sparse density estimation with measurement errors. arXiv:1911.06215, 2019 [24] Yin Z. Variable selection for sparse logistic regression. Metrika, 2020, 83(7):821-836 [25] Zou H. The adaptive lasso and its oracle properties. Journal of the American statistical association, 2006, 101(476):1418-1429 [26] Zhang H, Jia J. Elastic-net regularized high-dimensional negative binomial regression:consistency and weak signals detection. Statistica Sinica, 2021 [27] Zhang H. A note on//MLE in logistic regression with a diverging dimension. arXiv:1801.08898, 2018 [28] Luo J, Qin H, Wang Z. Asymptotic distribution in directed finite weighted random graphs with an increasing Bi-degree sequence. Acta Math Sci, 2020, 40B(2):355-368 |