[1] Abdeljawad A, Cappiello M, Toft J. Pseudo-differential calculus in anisotropic Gelfand-Shilov setting. Integr Equ Oper Theory, 2019, 91:26 [2] Aoki T. Locally bounded linear topological spaces. Proc Imp Acad Tokyo, 1942, 18:588-594 [3] Birman M S, Solomyak M Z. Estimates for the singular numbers of integral operators (Russian). Usbehi Mat Nauk, 1977, 32:17-84 [4] Boggiatto P, De Donno G, Oliaro A. Time-frequency representations of Wigner type and pseudo-differential operators. Trans Amer Math Soc, 2010, 362:4955-4981 [5] Boggiatto P, Cuong B K, De Donno G, Oliaro A. Weighted integrals of Wigner representations. J PseudoDiffer Oper Appl, 2010, 1:401-415 [6] Bony J M, Chemin J Y. Espaces functionnels associés au calcul de Weyl-Hörmander. Bull Soc Math France, 1994, 122:77-118 [7] Born M, Jordan P. Zur quantenmechanik. Z Physik, 1925, 34:858-888 [8] Buzano E, Toft J. Schatten-von Neumann properties in the Weyl calculus. J Funct Anal, 2010, 259:3080-3114 [9] Cappiello M, Toft J. Pseudo-differential operators in a Gelfand-Shilov setting. Math Nachr, 2017, 290:738-755 [10] Chung J, Chung S -Y, Kim D. Characterizations of the Gelfand-Shilov spaces via Fourier transforms. Proc Amer Math Soc, 1996, 124:2101-2108 [11] Cordero E, de Gosson M, Nicola F. On the invertibility of Born-Jordan quantization. J Math Pures Appl, 2016, 105:537-557 [12] Cordero E, de Gosson M, Nicola F. Time-frequency analysis of Born-Jordan pseudodifferential operators. J Funct Anal, 2017, 272:577-598 [13] Cordero E, de Gosson M, Nicola F. Born-Jordan pseudo-differential operators with symbols in the Shubin classes. Trans Amer Math Soc, 2017, 4B:94-109 [14] Cordero E, de Gosson M, Nicola F. On the reduction of the interferences in the Born-Jordan distribution. Appl Comput Harmon Anal, 2018, 44:230-245 [15] Cordero E, Pilipović S, Rodino L, Teofanov N. Quasianalytic Gelfand-Shilov spaces with applications to localization operators. Rocky Mt J Math, 2010, 40:1123-1147 [16] de Gosson M. Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators. Trans Amer Math Soc, 2013, 365:3287-3307 [17] de Gosson M. Born-Jordan Quantization. Theory and Applications. Fundamental Theories of Physics 182. Cham:Springer, 2016 [18] de Gosson M, Luef F. Preferred quantization rules:Born-Jordan vs. Weyl; Applications to phase space quantization. J Pseudo-Differ Oper Appl, 2011, 2:115-139 [19] Feichtinger H G. Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also in:Krishna M, Radha R, Thangavelu S, eds. Wavelets and Their Applications. Allied Publishers Private Limited, New Delhi Mumbai Kolkata Chennai Hagpur Ahmedabad Bangalore Hyderbad Lucknow, 2003:99-140 [20] Feichtinger H G, Gröchenig K H. Banach spaces related to integrable group representations and their atomic decompositions, I. J Funct Anal, 1989, 86:307-340 [21] Feichtinger H G, Gröchenig K H. Gabor frames and time-frequency analysis of distributions. J Funct Anal, 1997, 146:464-495 [22] Galperin Y V, Samarah S. Time-frequency analysis on modulation spaces Mmp,q, 0< p, q ≤ ∞. Appl Comput Harmon Anal, 2004, 16:1-18 [23] Gelfand I M, Shilov G E. Generalized Functions, Vol. 2. Spaces of Fundamental and Generalized Functions. New York, London:Academic Press, 1968 [24] Gramchev T, Pilipović S, Rodino L. Classes of degenerate elliptic operators in Gelfand-Shilov spaces//Rodino L, Wong M W, eds. New Developments in Pseudo-Differential Operators. Operator Theory:Advances and Applications 189. Basel:Birkhäuser Verlag, 2009:15-31 [25] Gröchenig K H. Foundations of Time-Frequency Analysis. Boston:Birkhäuser, 2001 [26] Gröchenig K H. Weight functions in time-frequency analysis//Rodino L, Wong M W, eds. Pseudodifferential Operators:Partial Differential Equations and Time-Frequency Analysis. Fields Institute Comm, 2007, 52:343-366 [27] Gröchenig K H, Zimmermann G. Spaces of test functions via the STFT. J Funct Spaces Appl, 2004, 2:25-53 [28] Hörmander L. Pseudo-differential operators. Comm Pure Appl Math, 1965, 18:501-517 [29] Hörmander L. The Weyl calculus of pseudo-differential operators. Comm Pure Appl Math, 1979, 32:359-443 [30] Hörmander L. The Analysis of Linear Partial Differential Operators, I, III. Berlin Heidelberg New York Tokyo:Springer-Verlag, 1983, 1985 [31] Janssen A J E M, Eijndhoven S J L. Spaces of type W, growth of Hermite coefficients, Wigner distribution, and Bargmann transform. J Math Anal Appl, 1990, 152:368-390 [32] Kohn J, Nirenberg L. On the algebra of pseudo-differential operators. Comm Pure Appl Math, 1965, 18:269-305 [33] Mitjagin B S. Nuclearity and other properties of spaces of type S. Amer Math Soc Transl, Ser 2, 1970, 93:45-59 [34] Pilipović S. Generalization of Zemanian spaces of generalized functions which have orthonormal series expansions. SIAM J Math Anal, 1986, 17:477-484 [35] Pilipović S. Tempered ultradistributions. Boll UMI, 1988, 7:235-251 [36] Rolewicz S. On a certain class of linear metric spaces. Bull Acad Polon Sci Sér Sci Math Astrono Phys, 1957, 5:471-473 [37] Simon B. Trace Ideals and Their Applications, I. London Math Soc Lecture Note Series. Cambridge London New York, Melbourne:Cambridge University Press, 1979 [38] Strohmer T. Pseudodifferential operators and Banach algebras in mobile communications. Appl Comput Harmon Anal, 2006, 20:237-249 [39] Toft J. Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces. Ann Glob Anal Geom, 2006, 30:169-209 [40] Toft J. Continuity and Schatten properties for pseudo-differential operators on modulation spaces//Toft J, Wong M W, Zhu H, eds. Modern Trends in Pseudo-Differential Operators. Operator Theory:Advances and Applications. Basel:Birkhäuser Verlag, 2007:173-206 [41] Toft J. The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J Pseudo-Differ Oper Appl, 2012, 3:145-227 [42] Toft J. Multiplication properties in Gelfand-Shilov pseudo-differential calculus//Molahajlo S, Pilipović S, Toft J, Wong M W, eds. Pseudo-Differential Operators, Generalized Functions and Asymptotics. Operator Theory:Advances and Applications 231. Basel, Heidelberg, New York, Dordrecht, London:Birkhäuser, 2013:117-172 [43] Toft J. Gabor analysis for a broad class of quasi-Banach modulation spaces//Pilipović S, Toft J, eds. Pseudo-differential Operators, Generalized Functions. Operator Theory:Advances and Applications 245. Birkhäuser, 2015:249-278 [44] Toft J. Images of function and distribution spaces under the Bargmann transform. J Pseudo-Differ Oper Appl, 2017, 8:83-139 [45] Toft J. Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes. Anal Appl, 15(2017), 353-389 [46] Toft J. Schatten properties, nuclearity and minimality of phase shift invariant spaces. Appl Comput Harmon Anal, 2019, 46:154-176 [47] Tranquilli G. Global Normal Forms and Global Properties in Function Spaces for Second Order Shubin Type Operators[D]. University of Cagliari, Italy, 2013 [48] Turunen V. Born-Jordan time-frequency analysis, Harmonic Analysis and Nonlinear Partial Differential Equations//Kubo H, Sugimoto M, eds. RIMS Kôkyûroku Bessatsu. Research Institute of Mathematical Sciences B56. Kyoto University 2016:107-186 [49] Weyl H. Gruppentheorie und Quantenmechanik. Leipzig:Verlag von S Hirzel, 1928 |