[1] Alí G, Bini D, Rionero S. Global existence and relaxation limit for smooth solution to the Euler-Poisson model for semiconductors. SIAM J Math Anal, 2000, 32:572-587 [2] Alí G, Jüngel A. Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J Diff Equations, 2003, 190:663-685 [3] Brenier Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2000, 25:737-754 [4] Smith R A. Semiconductors, 2nd ed. Cambridge UK:Cambridge University Press, 1978 [5] Gasser I, Hsiao L, Markowich P, Wang S. Quasineutral limit of a nonlinear drift diffusion model for semiconductor models. J Math Anal Appl, 2002, 268:184-199 [6] Gasser I, Levermore C D, Markowich P, Shmeiser C. The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J Appl Math, 2001, 12:497-512 [7] Guo Y. Smooth irrotational flows in the large to the Euler-Poisson system in R3+1. Comm Math Phys, 1998, 195:249-265 [8] Guo Y, Strauss W. Stability of semiconductor states with insulating and contact boundary conditions. Arch Rat Mech Anal, 2006, 179:1-30 [9] Hiao L, Markowich P A, Wang S. The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors. J Diff Equations, 2003, 192:111-133 [10] Hsiao L, Wang S. Quasineutral limit of a time dependent drift-diffusion-Poisson model for p-n junction semiconductor devices. J Differ Equa, 2006, 225:411-439 [11] Hsiao L, Li F C, Wang S. Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations. Sci China Ser A, 2006, 49:255-266 [12] Hsiao L, Li F C, Wang S. Coupled quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Commun Pure Appl Anal, 2008, 7:579-589 [13] Jüngel, A, Peng Y J. Ahierarchy of hydrodynamic models for plasmas:Quasi-neutral limits in the driftdiffusion equations. Asymptot Anal, 2001, 28:49-73 [14] Ju Q C, Li F C, Wang S, Convergence of Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations. J Math Phys, 2008, 49:73-95 [15] Li F C. Quasineutral limit of the electro-diffusion model arsing in electrohydrodynamics. J Diff Equations, 2009, 246:3620-3641 [16] Liu C D, Wang S. The mixed layer problem and zero debye vanishing limit of the bipolar dift-diffusion model with different mobilities. Submitted for publication, 2017 [17] Masmoudi N. From Vlasov-Poisson system to the incompressible Euler system. Comm Partial Differential Equations, 2001, 26:1913-1928 [18] Han B S, Yang Y H, Bo W J, Tang H L. Global dynamics for a Lotka-Volterra competition diffusion system with nonlocal effects. Internat J Bifur Chaos Appl Sci Engrg, 2020, doi:10.1142/S0218127420500637 [19] Suzuki M. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinet Relat Models, 2011, 4:569-588 [20] Temam R. Navier-Stokes Equations Theory and Numerical Analysis. Providence RI:AMS Chelsea Publishing, 2001 [21] Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential Equations, 2004, 29:419-456 [22] Wang S. Quasineutral limit of the multi-dimensional drift-diffusion-Poisson model for semiconductor with pn-junctions. Math Models Methods Appl Sci, 2006, 16:737-757 [23] Shi Q H, Zhang X B, Wang C Y, Wang S. Finite time blowup for Klein-Gordon-Schrödinger system. Math Meth Appl Sci, 2019, 42:3929-3941 [24] Shi Q H, Wang S, Klein-Gordon-Zakharov system in energy space:Blow-up profile and subsonic limit. Math Meth Appl Sci, 2019, 42:3211-3221 [25] Wang S, Jiang S. Theconvergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2005, 31:571-591 [26] Wang S, Wang K, Zhong P H. The initial layer problem of the electro-diffusion model arsing in electrohydrodynamics. (In Chinese) Journal of Beijing University of Technology, 2010, 8:1141-1147 [27] Wang S, Wang K. The mixed layer problem and quasi-neutral limit of the dift-diffusion model for semiconductors. SIAM J Math Anal, 2012, 44:699-717 [28] Wang S, Xin Z P, Markowich P A. Quasi-neutral limit of the drift diffusion models for semiconductors:the case of general sign-changing doping profile. SIAM J Math Anal, 2006, 37:1854-1889 [29] Wang S, Feng Y H, Li X. Existence of the global smooth solution to the periodic problem of bipolar Euler-Maxwell system on the torus. Acta Math Sci, 2012, 32A(6):1041-1049 [30] Wang C Y, Wang S, Li L R. Periodic solution and almost periodic solution of a nonmonotone reactiondiffusion system with time delay. Acta Math Sci, 2010, 30A(2):517-524 [31] Wang S, Xu Z L. Incomprestible limit of the MHD equations in bounded domains. Acta Math Sci, 2015, 35B(3):719-745 |