[1] Aubin J P, Frankowska H. Set-valued analysis//Modern Birkhäuser Classics. Boston:Birkhäuser, 2008 [2] Bae J H, Park W G. A functional equation having monomials as solutions. Appl Math Comput, 2010, 216:87-94 [3] Brzdȩk J, Pietrzyk A. A note on stability of the general linear equation. Aequationes Math, 2008, 75:267-270. [4] Brzdȩk J, Piszczek M. Selections of set-valued maps satisfying some inclusions and the Hyers-Ulam stability//Handbook of Functional Equations. Springer Optim Appl 96. New York:Springer, 2014:83-100 [5] Brzdȩk J, Piszczek M. Fixed points of some nonlinear operators in spaces of multifunctions and the Ulam stability. J Fixed Point Theory Appl, 2017, 19:2441-2448 [6] Brzdȩk J, Piszczek M. Ulam stability of some functional inclusions for multi-valued mappings. Filomat, 2017, 31:5489-5495 [7] Brzdȩk J, Popa D, Raşa I, Xu B. Ulam Stability of Operators. Oxford:Academic Press, Elsevier, 2018 [8] Brzdȩk J, Popa D, Xu B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal, 2011, 74:324-330 [9] Chang I S, Kim H M. On the Hyers-Ulam stability of quadratic functional equations. J Ineq Pure Appl Math, 2002, 3:Art. 33 [10] Czerwik S. Functional Equations and Inequalities in Several Variables. World Scientific London, 2002 [11] Gordji M E, Alizadeh Z, Khodaei H, Park C. On approximate homomorphisms:A fixed point approach. Math Sci, 2012, 6:Art No 59 [12] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci, 1941, 27:222-224 [13] Khodaei H, Rassias Th M. Set-valued dynamics related to generalized Euler-Lagrange functional equations. J Fixed Point Theory Appl, 2018, 20:Art No 32 [14] Kim H M. On the stability problem for a mixed type of quartic and quadratic functional equation. J Math Anal Appl, 2006, 324:358-372 [15] Lu G. Park C. Hyers-Ulam stability of additive set-valued functional equations. Appl Math Lett, 2011, 24:1312-1316 [16] Nikodem K. On quadratic set-valued functions. Publ Math Debrecen, 1984, 30:297-301 [17] Nikodem K. K-Convex and K-Concave Set-Valued Functions. Zeszyty Naukowe, Politech, Krakow, Poland, 1989 [18] Nikodem K, Popa D. On single-valuedness of set-valued maps satisfying linear inclusions. Banach J Math Anal, 2009, 3:44-51 [19] Nikodem K, Popa D. On selections of general linear inclusions. Publ Math Debrecen, 2009, 75:239-249 [20] Park C, O'Regan D, Saadati R. Stabiltiy of some set-valued functional equations. Appl Math Lett, 2011, 24:1910-1914 [21] Piszczek M. On selections of set-valued inclusions in a single variable with applications to several variables. Results Math, 2013, 64:1-12 [22] Piszczek M. The properties of functional inclusions and Hyers-Ulam stability. Aequations Math, 2013, 85:111-118 [23] Popa D. Additive selections of (α, β)-subadditive set valued maps. Glas Mat Ser Ⅲ, 2001, 36:11-16 [24] Popa D. A stability result for general linear inclusion. Nonlinear Funct Anal Appl, 2004, 3:405-414 [25] Rådström H. An embedding theorem for space of convex sets. Proc Amer Math Soc, 1952, 3:165-169 [26] Smajdor A. Additive selections of superadditive set-valued functions. Aequationes Math, 1990, 39:121-128 [27] Smajdor A, Szczawińska J. Selections of set-valued functions satisfying the general linear inclusion. J Fixed Point Theory Appl, 2016, 18:133-145 [28] Ulam S M. A Collection of Mathematical Problems. New York:Interscience Publishers, 1960; Reprinted as:Problems in Modern Mathematics. New York:John Wiley & Sons Inc, 1964 |