[1] Bi J, Xu F. A first-order limit law for functionals of two independent fractional Brownian motions in the critical case. J Theoret Probab, 2016, 29:941-957 [2] Biagini F, Hu Y. Øksendal B, Zhang T. Stochastic calculus for fractional Brownian motion and applications. Probability and its application. Berlin:Springer, 2008 [3] Biane P. Comportement asymptotique de certaines fonctionnelles additives de plusieurs mouvements browniens. Séminaire de Probabilités XXIII. Lect Notes Math. Berlin:Springer, 1989, 1372:198-233 [4] Hu Y, Wang B. Convergence rate of an approximation to multiple integral of fBm. Acta Mathematica Scientia, 2010, 30B(3):975-992 [5] Kallianpur G, Robbins H. Ergodic property of the Brownian motion process. Proc Nat Acad Sci U S A, 1953, 39:525-533 [6] Kasahara Y, Kotani S. On limit processes for a class of additive functionals of recurrent diffusion processes. Z Wahrsch Verw Gebiete, 197949:133-153 [7] LeGall J F. Propriétés d'intersection des marches aléatoires II. Etude des cas critiques. Commun Math Phys, 1986, 104:509-528 [8] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10:422-437 [9] Nualart D. Malliavin Calculus and Related Topics. Berlin:Springer, 2006 [10] Nualart D, Xu F. Central limit theorem for an additive functional of the fractional Brownian motion II. Electron Comm Probab, 2013, 18(74):1-10 [11] Nualart D, Xu F. Central limit theorem for functionals of two independent fractional Brownian motions. Stochastic Process Appl, 2014, 124(11):3782-3806 [12] Samorodnitsky G, Taqqu M S. Stable non-Gaussian Random Processes. Stochastic models with infinite variance. New York:Chapman & Hall, 1994 [13] Sato K I. Lévy Processes and Infinitely Divisible Distributions. New York:Cambridge University Press, 1999 [14] Shen G, Yan L, Liu J. Power variation of subfractional Brownian motion and application. Acta Mathematica Scientia, 2013, 33B(4):901-912 [15] Shen G, Yan L. An approximation of sub-fractional Brownian motion. Comm Statist Theory Methods, 2014, 43(9):1873-1886 [16] Song J, Xu F, Yu Q. Limit theorems for functionals of two independent Gaussian processes. Stochastic Process Appl, 2019, 129(11):4791-4836 [17] Tudor C. Some properties of the sub-fractional Brownian motion. Stochastics, 2007, 79(5):431-448 [18] Wang B. Convergence rate of multiple fractional stratonovich type integral for Hurst parameter less than 1/2. Acta Mathematica Scientia, 2011, 31B(5):1694-1708 [19] Xu F. Second-order limit laws for occupation times of the fractional Brownian motion. J Appl Prob, 2017, 54:444-461 [20] Yan L, Shen G. On the collision local time of sub-fractional Brownian motions. Statist Probab Lett, 2010, 80(5):296-308 |