[1] Fox R H, Kershner R B. Geodesics on a rational polyhedron. Duke Math J, 1936, 2:147-150 [2] Gutkin E, Judge C. Affine mappings of translation surfaces:Geometry and arithmetic. Duke Math J, 2000, 103:191-213 [3] Gutkin E, Hubert P, Schmidt T. Affine diffeomorphisms of translation surfaces:periodic points, Fuchsian groups, and arithmeticity. Ann Sci École Norm Supér, 2003, 36, 847-866 [4] Hubert P, Schmidt T A. Invariants of translation surfaces. Ann Inst Fourier, 200151:461-495 [5] Kerckhoff S, Masur H, Smillie J. Ergodicity of billiard flows and quadratic differentials. Annals of Math, 1986, 124:293-311 [6] Katok A, Zemlyakov A. Topological transitivity of billiards in polygons. Math Notes, 1975, 18:760-764 [7] McMullen C T. Teichmüller curves in genus two:Discriminant and spin. Math Ann, 2005, 333:87-130 [8] McMullen C T. Billiards and Teichmüller Curves on Hilbert Modular Surfaces. J Amer Math Soc, 2003, 16(4):857-885 [9] Mukamel R. Fundamental domains and generators for lattice Veech groups. Commentarii Mathematici Helvetici, 2017, 92(1):57-83 [10] Smillie J, Weiss B. Characterizations of lattice surfaces. Invent Math, 2010, 180(3):535-557 [11] Smillie J, Weiss B. Finiteness results for flat surfaces:a survey and problem list//Partially hyperbolic dynamics, laminations, and Teichmüller flow. Toronto:Fields Institute, 2006:125-137 [12] Wu C. Lattice surfaces and smallest triangles. Geometriae Dedicata, 2017, 187(1):107-121 [13] Veech W A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent Math, 1989, 97(3):553-583 [14] Vorobets Y. Planar structures and billiards in rational polygons:the Veech alternative. Russian Math Surveys, 1996, 51:779-817 |