数学物理学报(英文版) ›› 2020, Vol. 40 ›› Issue (2): 425-441.doi: 10.1007/s10473-020-0209-3
黄浩川1, 黄锐2
Haochuan HUANG1, Rui HUANG2
摘要: In higher dimension, there are many interesting and challenging problems about the dynamics of non-autonomous Chafee-Infante equation. This article is concerned with the asymptotic behavior of solutions for the non-autonomous Chafee-Infante equation $\frac{\partial u}{\partial t}- \Delta u =\lambda(t) (u -u^{3})$ in higher dimension, where $\lambda(t)\in C^{1}[0,T]$ and $\lambda(t)$ is a positive, periodic function. We denote $\lambda_{1}$ as the first eigenvalue of $ -\Delta \varphi = \lambda \varphi, \; x \in \Omega; \;\; \varphi=0, \; x \in \partial \Omega. $ For any spatial dimension $N\geq1$, we prove that if $\lambda(t)\leq\lambda_{1}$, then the nontrivial solutions converge to zero, namely, $\underset{t\rightarrow+\infty }{\lim} u(x,t) =0, \; x\in\Omega$; if $\lambda(t)>\lambda_{1}$ as $t\rightarrow +\infty$, then the positive solutions are ``attracted'' by positive periodic solutions. Specially, if $\lambda(t)$ is independent of $t$, then the positive solutions converge to positive solutions of $- \Delta U =\lambda(U -U^{3})$. Furthermore, numerical simulations are presented to verify our results.
中图分类号: