[1] Arosio A, Panizzi S. On the well-posedness of the Kirchhoff string. Trans Amer Math Soc, 1996, 348:305-330 [2] Bartsch T, Peng S. Semiclassical symmetric Schrödinger equations:existence of solutions concentrating simultaneously on several spheres. Z Angew Math Phys, 2007, 58:778-804 [3] Berestycki H, Lions P L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Rational Mech Anal, 1983, 82:313-345 [4] Bernstein S. Sur une classe d'équations fonctionelles aux dérivées partielles. Bull Acad Sci URSS Sér, 1940, 4:17-26 [5] Cao D, Li S, Luo P. Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc Var Partial Differential Equations, 2015, 54:4037-4063 [6] Cao D, Noussair E S. Multiplicity of positive and nodal solutions for nonlinear elliptic solutions in RN. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13:567-588 [7] Cao D, Noussair E S, Yan S. Existence and uniqueness results on Single-Peaked solutions of a semilinear problem. Ann Inst H Poincaré Anal Non Linéaire, 1998, 15:73-111 [8] Cao D, Noussair E S, Yan S. Solutions with multiple peaks for nonlinear elliptic equations. Proc Royal Soc Edinburgh, 1999, 129:235-264 [9] Cao D, Peng S. Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Comm Partial Differential Equations, 2009, 34:1566-1591 [10] Chang S, Gustafson S, Nakanishi K, Tsai T P. Spectra of linearized operators for NLS solitary waves. SIAM J Math Anal, 2007, 39:1070-1111 [11] D'Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108:247-262 [12] Deng X, Lin C, Yan S. On the prescribed scalar curvature problem in RN, local uniqueness and periodicity. J Math Pures Appl, 2015, 104:1013-1044 [13] Figueiredo G M, Ikoma N, Santos Júnior João R. Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch Rational Mech Anal, 2014, 213:931-979 [14] Grossi M. On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann Inst H Poincaré Anal Non Linéaire, 2002, 19:261-280 [15] He Y. Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity. J Differential Equations, 2016, 261:6178-6220 [16] He Y, Li G. Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54:3067-3106 [17] He Y, Li G, Peng S. Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents. Adv Nonlinear Stud, 2014, 14:483-510 [18] He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J Differential Equations, 2012, 252:1813-1834 [19] Hu T, Shuai W. Multi-peak solutions to Kirchhoff equations in R3 with general nonlinearity. J Differential Equations, 2018, 265(8):3587-3617 [20] Kirchhoff G. Mechanik. Teubner, Leipzig, 1883 [21] Li G, Luo P, Peng S, Wang C, Xiang C. Uniqueness and Nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems. Preprint at arXiv:1703.05459[math.AP] [22] Lions J L. On some questions in boundary value problems of mathematical physics//Contemporary Development in Continuum Mechanics and Partial Differential Equations. North-Holland Math Stud. Amsterdam, New York:North-Holland, 1978:284-346 [23] Luo P, Peng S, Wang C, Xiang C. Multi-peak positive solutions to a class of Kirchhoff equations. Proc Royal Soc Edinburgh, A, 2019, 149(4):1097-1122 [24] Noussair E S, Yan S. On positive multi-peak solutions of a nonlinear elliptic problem. J London Math Soc, 200, 62:213-227 [25] Pohozaev S I. A certain class of quasilinear hyperbolic equations. Mat Sb (NS), 1975, 96:152-166(in Russian) [26] Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43:270-291 [27] Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253:2314-2351 |