[1] Alazard T. Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180:1-73 [2] Bendali A, Dominguez J M, Gallic S. A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J Math Anal Appl, 1985, 107:537-560 [3] Bourguignon J, Brezis H. Remarks on the Euler equation. J Funct Anal, 1974, 15:341-363 [4] Chu Y, Liu X, Liu X. Strong solutions to the compressible liquid crystal system. Pacific J Math, 2012, 257:37-52 [5] Cui W, Ou Y, Ren D. Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains. J Math Anal Appl, 2015, 427:263-288 [6] Ding S, Huang J, Wen H, Zi R. Incompressible limit of the compressible nematic liquid crystal flow. J Funct Anal, 2013, 264:1711-1756 [7] Dou C, Jiang S, Ou Y. Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J Differential Equations, 2015, 258:379-398 [8] Fan J, Li F, Nakamura G. Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J Math Phys, 2018, 59:031503 [9] Feireisl E, Fremond M, Rocca E, Schimperna G. A new approach to non-isothermal models for nematic liquid crystals. Arch Ration Mech Anal, 2012, 205:651-672 [10] Feireisl E, Rocca E, Shimperna G, On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24:243-257 [11] Gu W, Fan J, Zhou Y. Regularity criteria for some simplified non-isothermal models for nematic liquid crystals. Comput Math Appl, 2016, 72:2839-2853 [12] Guo B, Xi X, Xie B. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J Differential Equations, 2017, 262:1413-1460 [13] Guo B, Xie B, Xi X. On a compressible non-isothermal model for nematic liquid crystals. arXiv:1603.03976 [14] Huang T, Wang C, Wen H. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252:2222-2265 [15] Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204:285-311 [16] Jiang F, Jiang S, Wang D. On multi-dimensional compressible flow of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265:3369-3397 [17] Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214:403-451 [18] Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34:481-524 [19] Li J, Xin Z. Global existence of weak solutions to the non-isothermal nematic liquid crystuls in 2D. Acta Math Sci, 2016, 36B(3):973-1014 [20] Li X, Guo B. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete Contin Dyn Syst Ser S, 2016, 9:1913-1937 [21] Lin F, Wang C. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2014, 372:20130361, 18pp [22] Lions P L. Mathematical Topics in Fluid Mechanics Vol 2:Compressible Models. New York:Oxford University Press, 1998 [23] Metivier G, Schochet S. The incompressible limit of the non-isentropic Euler equations. Arch Ration Mech Anal, 2001, 158:61-90 [24] Qi G, Xu J. The low Mach number limit for the compressible flow of liquid crystals. Appl Math Comput, 2017, 297:39-49 [25] Schochet S. The mathematical theory of the incompressible limit in fluid dynamics//Handbook of Mathematical Fluid Dynamics, Vol IV. Amsterdam:Elsevier/North-Holland, 2007:123-157 [26] Xiao Y, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60:1027-1055 [27] Yang X. Uniform well-posedness and low Mach number limit to the compressible nematic liquid flows in a bounded domain. Nonlinear Anal, 2015, 120:118-126 |