[1] Al-Baali M. Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J Numer Anal, 1985, 5:121-124 [2] Andrei N. New hybrid conjugate gradient algorithms for unconstrained optimization. Encyclopedia of Optimization, 2009:2560-2571 [3] Andrei N. A hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan algorithms. Studies in Informatics and Control, 2008, 17(4):373-392 [4] Andrei N. A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan. Studies in Informatics and Control, 2008, 17(1):55-70 [5] Andrei N. Another hybrid conjugate gradient algorithm for unconstrained optimization. Numerical Algorithms, 2008, 47(2):143-156 [6] Andrei N. An unconstrained optimization test functions. Advanced Modeling and Optimization, An Electronic International Journal, 2008, 10:147-161 [7] Andrei N. Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numer Algorithms, 2010, 54:23-46 [8] Dai Y H, Yuan Y. Convergence properties of the Fletcher-Reeves method. IMA J Numer Anal, 1996, 16: 155-164 [9] Dai Y H, Liao L Z. New conjugacy conditions and related nonlinear conjugate gradient methods. Appl Math Optim, 2001, 43:87-101 [10] Dai Y H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J Optim, 1999, 10:177-182 [11] Dai Y H, Han J Y, Liu G H, Sun D F, Yin X, Yuan Y. Convergence properties of nonlinear conjugate gradient methods. SIAM J Optim, 1999, 10:348-358 [12] Dai Y H. A family of hybrid conjugate gradient methods for unconstrained optimization. Math Comp, 2003, 72:1317-1328 [13] Dai Y H, Yuan Y. A class of globally convergent conjugate gradient methods. Sci China Ser A, 2003, 46: 251-262 [14] Dorđević S S. New hybrid conjugate gradient method as a convex combination of FR and PRP methods. Filomat, 2016, 30(11):3083-3100 [15] Dolan E D, Moré J J. Benchmarking optimization software with performance profiles. Math Programming, 2002, 91:201-213 [16] Fletcher R. Practical Methods of Optimization Vol. 1:Unconstrained Optimization. New York:John Wiley and Sons, 1987 [17] Fletcher R, Reeves C. Function minimization by conjugate gradients. Comput J, 1964, 7:149-154 [18] Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim, 1992, 2:21-42 [19] Hager W W, Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J Optim, 2003, 16(1):170-192 [20] Hager W W, Zhang H. CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software, 2006, 32(1):113-137 [21] Hager W W, Zhang H. A survey of nonlinear conjugate gradient methods. Pacific J Optim, 2006, 2:35-58 [22] Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems. J Research Nat Bur Standards, 1952, 49:409-436 [23] Hu Y F, Storey C. Global convergence result for conjugate gradient methods. J Optim Theory Appl, 1991, 71:399-405 [24] Liu J K, Li S J. New hybrid conjugate gradient method for unconstrained optimization. Appl Math Comput, 2014, 245:36-43 [25] Liu Y, Storey C. Efficient generalized conjugate gradient algorithms, part 1:theory. JOTA, 1991, 69: 129-137 [26] Liu G H, Han J Y, Yin H X. Global convergence of the Fletcher-Reeves algorithm with an inexact line search. Appl Math J Chinese Univ, Ser B, 1995, 10:75-82 [27] Polak E, Ribiére G. Note sur la convergence de méthodes de directions conjugués. Revue Française d'Informatique et de Recherche Opérationnelle, 1969, 16:35-43 [28] Polyak B T. The conjugate gradient method in extreme problems. USSR Comp Math Math Phys, 1969, 9: 94-112 [29] Powell M J D. Restart procedures of the conjugate gradient method. Math Program, 1977, 2:241-254 [30] Touati-Ahmed D, Storey C. Efficient hybrid conjugate gradient techniques. J Optim Theory Appl, 1990, 64:379-397 [31] Wolfe P. Convergence conditions for ascent methods. SIAM Review, 1969, 11:226-235 [32] Wolfe P. Convergence conditions for ascent methods. II:Some corrections. SIAM Review, 1969, 11:226-235 [33] Yang X, Luo Z, Dai X. A global convergence of LS-CD hybrid conjugate gradient method. Adv Numer Anal, 2013, 2013:Article ID 517452, 5 pages [34] Yuan Y, Stoer J. A subspace study on conjugate gradient algorithm. Z Angew Math Mech, 1995, 75:69-77 [35] Yuan G, Meng Z, Li Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J Optim Theory Appl, 2016, 168:129-152 [36] Yuan G, Wei Z, Li G. A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. J Comput Appl Math, 2014, 255:86-96 [37] Yuan G, Wei Z, Lu X. Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. Appl Math Model, 2017, 47:811-825 [38] Yuan G, Wei Z, Zhao Q. A modified Polak-Ribiére-Polyak conjugate gradient algorithm for large-scale optimization problems. IIE Transactions, 2014, 46:397-413 [39] Yuan G, Zhang M. A three-terms Polak-Ribiére-Polyak conjugate gradient algorithm for large-scale nonlinear equations. J Comput Appl Math, 2015, 286:186-195 [40] Zoutendijk G. Nonlinear programming, computational methods//Abadie J, ed. Integer and Nonlinear Programming. Amsterdam:North-Holland, 1970:37-86 |