[1] |
Andrews G E, Askey R, Roy R. Special Functions. 71 of Encyclopedia of Mathematics and its Applications Sciences. Cambridge:Cambridge University Press, 1999
|
[2] |
Atakishiyev N M, Frank A, Wolf K B. A simple difference realization of the Heisenberg q-algebra. J Math Phys, 1994, 35(7):3253-3260
|
[3] |
Atakishiyev M N, Atakishiyev N M, Klimyk A U. On suq(1, 1)-models of quantum oscillator. J Math Phys, 2006, 47:093502
|
[4] |
Bettaibi N, Bettaieb R. q-analogue of the Dunkl transform on the real line. Tamsui Oxford Journal of Mathematical Sciences, 2009, 25(2):178-206
|
[5] |
Biedenharn L C, Lohe M A. Quantum Group Symmetry and Q-Tensor Algebras. Singapore:World Scientific, 1995
|
[6] |
Borzov V V, Damaskinsky E V. Generalized coherent states for the q-oscillator associated with discrete q-Hermite polynomials. Journal of Mathematical Sciences. 2005, 132(1):26-36
|
[7] |
Brink L, Hansson T H, Vasiliev M A. Explicit solution to the N body Calogero problem. Phys Lett B, 1992, 286:109-111
|
[8] |
Brink L, Hansson T H, Konstein S, Vasiliev M A. The Calogero model:anyonic presentations, fermionic extension and supersymmetry. Nuclear Physics B, 1993, 401:591-612
|
[9] |
Cardoso J L, Petronilho J. Variations around Jacksons quantum operator. Methods Appl Anal, 2015, 22(4):343-358
|
[10] |
De Sole A, Kac V G. On integral representations of a q-gamma and a q-beta functions. Atti Accad Naz Lincei CI Sci Fis Mat Natur Rend Lincei (9) Mat App, 2005, 16:11-29
|
[11] |
Drinfel'd V G. Quantum groups//Proceedings of the International Congress of Mathematlcians. Berkeley, 1986, 1. Amer Math Soc, 1987:798-820
|
[12] |
Floreanini R, Vinet L. q-analogues of the parabose and parafermi oscillators and representations of quantum algebras. J Phys A:Math Gen, 1990, 23:L1019-L1023
|
[13] |
Gasper G, Rahman M. Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Application. Vol, 35. Cambridge, UK:Cambridge Univ Press, 1990
|
[14] |
Jazmati M, Mezlini K, Bettaibi N. Generalized q-Hermite polynomials and the q-Dunkl heat equation. Bull Math Anal Appl, 2014, 6(4):16-43
|
[15] |
Kac V G, Cheung P. Quantum Calculus. Universitext. New York:Springer-Verlag, 2002
|
[16] |
Kulish P P, Damaskinsky E V. On the q-oscillator and the quantum algebra suq(1, 1). J Phys A:Math Gen, 1990, 23(9):L415-L419
|
[17] |
Macfarlane A J. Algebraic structure of parabose Fock space, I, the Greens ansatz revisited. J Math Phys,1994, 35:1054-1065
|
[18] |
Macfarlane A J. Generalised oscillator systems and their parabosonic interpretation//Sissakian A N, Pogosyan G S, Vinitsky S I. Proc Inter Workshop on Symmetry Methods in Physics. JINR, Dubna, 1994:319-325
|
[19] |
Perelemov A. Generalized Coherent States and Their Applications. Berlin:Springer, 1986
|
[20] |
Richard L Rubin. A q2-Analogue Operator for q2-analogue Fourier Analysis. J Math Anal Appl, 1997, 212:571-582
|
[21] |
Rosenblum M. Generalized Hermite polynomials and the Bose-like oscillator calculus//Operator Theory:Advances and Applications, Vol 73. Basel:Birkhäuser Verlag, 1994:369-396
|
[22] |
Klimyk A, Schüdgen K. Quantum Groups and Their Representations. Berlin:Springer, 1997
|