[1] Mainardi F. Fractals and Fractional Calculus Continuum Mechanics. Springer Verlag, 1997 [2] Malinowska A B, Torres D F M. Towards a combined fractional mechanics and quantization. Fract Calculus Appl Anal, 2012, 15:407-417 [3] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation. J Comput Appl Math, 2004, 166:209-219 [4] Al-Sulami H, El-Shahed M, Nieto J J, Shammakh W. On fractional order dengue epidemic model. Mathematical Problems in Engineering, 2014, 2014:456537, 6 pages [5] Area I, Losada J, Ndaïrou F, Nieto J J, Tcheutia D D. Mathematical modeling of 2014 Ebola outbreak (In Press). Mathematical Methods in the Applied Sciences. DOI:10.1002/mma.3794 [6] Dzielinski A, Sierociuk D, Sarwas G. Ultracapacitor parameters identification based on fractional order model. Budapest:Proc ECC'09, 2009 [7] Eslahchi M R, Mehdi Dehghan, Parvizi M. Application of the collocation method for solving nonlinear fractional integro-differential equations. J Comput Appl Math, 2014, 257:105-128 [8] Zhao J J, Xiao J Y, Ford Neville J. Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer Algorithms, 2014, 65:723-743 [9] Gong C Y, Bao W M, Tang G J, Yang B, Liu J. An efficient parallel solution for Caputo fractional reaction-diffusion equation. J Supercomput, 2014, 68:1521-1537 [10] Stokes P W, Philippa B, Read W, White R D. Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart. J Comput Phys, 2015, 1:334-344 [11] Xu Q W, Hesthaven Jan S, Chen F. A parareal method for time-fractional differential equations. J Comput Phys, 2014, 293:173-183 [12] Mohammed Al-Refai, Yuri Luchko. Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives. Appl Math Comput, 2015, 257:40-51 [13] Zhang K Y, Xu J F, Donal O'Regan. Positive solutions for a coupled system of nonlinear fractional differential equations. Math Methods Appl Sci, 2015, 38:1662-1672 [14] Agarwal Ravi P, Donal O'Regan, Svatoslav Staněk. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J Math Anal Appl, 2010, 1:57-68 [15] Mustafa G, Ismail Y. Positive solutions of higher-order nonlinear mulit-point fractional equations with integral boundary conditions. Frac Calc Appl Anal, 2016, 19:989-1009 [16] Li B X, Sun S R, Han Z L. Positive solutions for singular fractional differential equations with three-point boundary conditions. J Appl Math Comput, 2016, 52:477-488 [17] Li Y. Nonexistence of positive solutions for a semi-linear equation involing the fractional Laplcian in RN*. Acta Mathematica Scientia, 2016, 36:666-682 [18] Wang Guotao, Agarwal Ravi P, Cabada Alberto. Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl Math Lett, 2012, 6:1019-1024 [19] Tadeusz Kaczorek. Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans on Circuits and Systems-I, 2011, 6:1203-1210 [20] Lelarasmee E, Ruehli A, Sangiovanni-Vincentelli A. The waveform relaxation method for time domain analysis of large scale integrated circuits. IEEE Trans Computer-Aided Design, 1982, 1:131-145 [21] Leimkuhler B, Ruehli A E. Rapid convergence of waveform relaxation. Appl Numer Math, 1993, 11:211-224 [22] Jiang Y L. A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations:The continuous-time and discrete-time cases. IEEE Trans Circuits and Systems-I, 2004, 51:1770-1780 [23] Zubik-kowal B, Vandewalle S. Waveform relaxation for functional differential equation. SIAM J Sci Comput, 1999, 21:207-226 [24] Ding X L, Jiang Y L. Waveform relaxation methods for fractional differential-algebraic equations. Fract Calculus Appl Anal, 2014, 17:585-604 [25] Ding X L, Jiang Y L. Semilinear fractional differential equations based on a new integral operator approach. Commun Nonlinear Sci Numer Simulat, 2012, 17:5143-5150 [26] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Amsterdam:Elsevier Science B V, 2006 [27] Sandberg I W. A nonnegativity-preservation property associated with certain systems of nonlinear differential equations//Proceedings of the 1974 IEEE International Conference on Systems, Man and Cybernetics. Los Alamitas, CA:IEEE Computer Society, 1974:230-233 [28] Nestruev J. Smooth manifolds and Observables. Berlin:Springer, 2003 |