[1] Hyers D H, Isac G, Rassias Th M. Stability of Functional Equations in Several Variables. Boston:Birkhäuser, 1998 [2] Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288(2):852-869 [3] Brillouët-Belluot N, Brzdȩk J, Ciepliński K. On some recent developments in Ulam's type stability. Abstr Appl Anal, 2012, Art ID 716936 [4] Brzdȩk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2013, Art ID 401756 [5] Brzdȩk J, Ciepliński K, Lésniak Z. On Ulam's type stability of the linear equation and related issues. Discrete Dyn Nat Soc, 2014, Art ID 536791 [6] Forti G L. Hyers-Ulam stability of functional equations in several variables. Aequationes Math, 1995, 50(1/2):143-190 [7] Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. New York:Springer, 2011 [8] Miura T, Takahasi S, Choda H. On the Hyers-Ulam stability of real continuous function valued differentiable map. Tokyo J Math, 2001, 24(2):467-476 [9] Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28:1-43 [10] Gao J. On the stability of the linear mapping in 2-normed spaces. Nonlinear Funct Anal Appl, 2009, 14(5):801-807 [11] Cho Y J, Park C, Eshaghi Gordji M. Approximate additive and quadratic mappings in 2-Banach spaces and related topics. Int J Nonlinear Anal Appl, 2012, 3(2):75-81 [12] Chung S C, Park W G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int J Math Anal (Ruse), 2012, 6(17/20):951-961 [13] Ciepliński K. Approximate multi-additive mappings in 2-Banach spaces. Bull Iranian Math Soc, 2015, 41(3):785-792 [14] Ciepliński K, Surowczyk A. On the Hyers-Ulam stability of an equation characterizing multi-quadratic mappings. Acta Mathematica Scientia, 2015, 35B(3):690-702 [15] Ciepliński K, Xu T Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J Math, 2013, 29(2):159-166 [16] Park W G. Approximate additive mappings in 2-Banach spaces and related topics. J Math Anal Appl, 2011, 376(1):193-202 [17] Brzdȩk J, Čadariu L, Ciepliński K. Fixed point theory and the Ulam stability. J Funct Spaces, 2014, Art ID 829419 [18] Ciepliński K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey. Ann Funct Anal, 2012, 3(1):151-164 [19] Xu B, Brzdȩk J, Zhang W. Fixed-point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J Math, 2015, 273(2):483-498 [20] Brzdȩk J, Chudziak J, Páles Zs. A fixed point approach to stability of functional equations. Nonlinear Anal, 2011, 74(17):6728-6732 [21] Brzdȩk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74(18):6861-6867 [22] Čadariu L, Gǎvrutą L, Gǎvrutą P. Fixed points and generalized Hyers-Ulam stability. Abstr Appl Anal, 2012, Art ID 712743 [23] Bahyrycz A, Brzdȩk J, Jab lónska E, Olko J. On functions that are approximate fixed points almost everywhere and Ulam's type stability. J Fixed Point Theory Appl, 2015, 17(4):659-668 [24] Kannappan Pl. Functional Equations and Inequalities with Applications. New York:Springer, 2009 [25] Kuczma M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Basel:Birkhäuser Verlag, 2009 [26] Sahoo P K, Kannappan Pl. Introduction to Functional Equations. Boca Raton:CRC Press, 2011 [27] Borelli Forti C. Solutions of a nonhomogeneous Cauchy equation. Rad Mat, 1989, 5(2):213-222 [28] Ebanks B R. Generalized Cauchy difference functional equations. Aequationes Math, 2005, 70(1-2):154-176 [29] Ebanks B R. Generalized Cauchy difference equations. Ⅱ. Proc Amer Math Soc, 2008, 136(11):3911-3919 [30] Ebanks B R, Kannappan Pl, Sahoo P K. Cauchy differences that depend on the product of arguments. Glasnik Mat Ser Ⅲ, 1992, 27(47)(2):251-261 [31] Fenyö I, Forti G-L. On the inhomogeneous Cauchy functional equation. Stochastica, 1981, 5(2):71-77 [32] Járai A, Maksa Gy, Páles Zs. On Cauchy-differences that are also quasisums. Publ Math Debrecen, 2004, 65(3-4):381-398 [33] Brzdȩk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1-2):58-67 [34] Brzdȩk J. Remarks on hyperstability of the Cauchy functional equation. Aequationes Math, 2013, 86(3):255-267 [35] Brzdȩk J. A hyperstability result for the Cauchy equation. Bull Aust Math Soc, 2014, 89(1):33-40 [36] Isac G, Rassias Th M. Functional inequalities for approximately additive mappings//Rassias Th M, Tabor, J Stability of Mappings of Hyers-Ulam Type. Palm Harbor:Hadronic Press, 1994:117-125 [37] Piszczek M. Remark on hyperstability of the general linear equation. Aequationes Math, 2014, 88(1-2):163-168 [38] Freese R W, Cho Y J. Geometry of Linear 2-normed Spaces. Hauppauge, NY:Nova Science Publishers, Inc, 2001 |