[1] Charchov I. Harmonic Analysis on Line Bundles over Complex Hyperbolic Spaces. University of Leiden, December 1999 [2] van Dijk G. (GL(n+1, R), GL(n, R)) is a generalized Gelfand pair. Russ J Math Phys, 2008, 15(4):548-551 [3] van Dijk G, Poel M. The Plancherel formula for the Pseudo-Riemannian space SL(n, R)/GL(n-1, R). Compos Math, 1986, 58:371-397 [4] Faraut J. Distributions sphériques sur les espaces hyperboliques. J Math Pures Appl, 1979, 58:369-444 [5] Gelfand I M, Shilov G E. Generalized Functions, Vol 1. New York:Academic Press, 1964 [6] Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, 1978 [7] Helgason S. Groups and Geometric Analysis. New York:Academic Press, 1994 [8] Kosters M T, van Dijk G. Spherical distributions on the Pseudo-Riemannian space SL(n, R)/GL(n-1, R). J Funct Anal, 1986, 68:168-213 [9] Kosters M T. Spherical Distributions on Rank One Symmetric Spaces. Leiden University, Leiden, January 1983 [10] Lang S. SL2(R), Volume 105 of Graduate Texts in Mathematics. New York:Springer-Verlag, 1985. Reprint of the 1975 edition [11] Tengstrand A. Distributions invariant under an orthogonal group of arbitrary signature. Math Scand, 1960, 8:201-218 [12] Wallach N. Harmonic Analysis on Homogeneous Spaces. New York:Marcel Dekker, 1973 [13] Wang Z X, Guo D R. Special Functions. Singapore:World Scientific, 1989 |