数学物理学报(英文版) ›› 2017, Vol. 37 ›› Issue (6): 1653-1664.doi: 10.1016/S0252-9602(17)30098-X

• 论文 • 上一篇    下一篇

LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS

陈化1, 陈洪葛2, 段忆苪2, 胡鑫2   

  1. 1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China;
    2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • 收稿日期:2016-08-31 修回日期:2017-03-14 出版日期:2017-12-25 发布日期:2017-12-25
  • 作者简介:Hua CHEN,chenhua@whu.edu.cn;Hongge CHEN,hongge_chen@whu.edu.cn;Yirui DUAN,zzuduanyirui@163.com;Xin HU,hux@whu.edu.cn
  • 基金资助:

    This work is partially supported by the NSFC (11631011, 11626251).

LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS

Hua CHEN1, Hongge CHEN2, Yirui DUAN2, Xin HU2   

  1. 1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China;
    2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • Received:2016-08-31 Revised:2017-03-14 Online:2017-12-25 Published:2017-12-25
  • Supported by:

    This work is partially supported by the NSFC (11631011, 11626251).

摘要:

Let Ω be a bounded open domain in Rn with smooth boundary Ω, X=(X1, X2, …, Xm) be a system of real smooth vector fields defined on Ω and the boundary ∂Ω is non-characteristic for X. If X satisfies the Hörmander's condition, then the vector field is finitely degenerate and the sum of square operator △X=???20170608???Xj2 is a finitely degenerate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △X on Ω.

关键词: Dirichlet eigenvalues, finitely degenerate elliptic operators, Hörmander's condition, sub-elliptic estimate, Grushin type operator

Abstract:

Let Ω be a bounded open domain in Rn with smooth boundary Ω, X=(X1, X2, …, Xm) be a system of real smooth vector fields defined on Ω and the boundary ∂Ω is non-characteristic for X. If X satisfies the Hörmander's condition, then the vector field is finitely degenerate and the sum of square operator △X=???20170608???Xj2 is a finitely degenerate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △X on Ω.

Key words: Dirichlet eigenvalues, finitely degenerate elliptic operators, Hörmander's condition, sub-elliptic estimate, Grushin type operator