[1] Cazenave T. Semilinear Schrödinger Equations. Courant Lecturre Notes in Mathematics, 10. American Mathematical Society, 2003 [2] Chen J Q, Guo B L. Strong instability of standing waves for a nonlocal Schrödinger equation. Phys D, 2007, 227:142-148 [3] Duyckaerts T, Roudenko S. Going beyound the threshold:scattering and blow-up in the focusing NLS equation. Commun Math Phys, 2015, 334:1573-1615 [4] Gaididei, Yu B, Rasmussen K O, Christiansen P L. Nonlinear excitations in two-dimensional molecular structures with impurities. Phys Rev E, 1995, 52:2951-2962 [5] Gao Y F, Wang Z Y. Scattering versus blow-up for the focusing L2 supercritical Hartree equation. Z Angew Math Phy, 2014, 65:179-202 [6] Holmer J, Platte R, Roudenko S. Blow-up criteria for the 3D cubic nolinear Schrödinger equation. Nonlinearity, 2010, 23:977-1030 [7] Li D, Miao C X, Zhang X Y. The focusing energy-critical Hartree equation. J Diff Eq, 2009, 246:1139-1163 [8] Ma L, Lin Z. Classificatiion of positive solitary solutions of the nonlinear Choquard equation. Arch Rational Mech Anal, 2010, 195:455-467 [9] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1:109-145, 223-284 [10] Miao C X, Xu G X, Zhao L F. Global well-posedness and scattering for the mass-critical Hartree equation for radial data. J Math Pures Appl, 2009, 91:49-79 [11] Miao C X, Xu G X, Zhao L F. The cauchy problem of the Hartree equation. J Partial Differ Equ, 2008, 21:22-44 [12] Pitaevskii L P. Vortex lines in an imperfect Bose gas. Sov Phys JETP, 1961, 13:451-454 [13] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun Math Phys, 1983, 87:567-576 [14] Zhang J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal-TMA, 2002, 48:191-207 [15] Zhang J, Zhang L M, Chen J. A numerical simulation method of nonlinear Schrödinger equation. Acta Math Sci, 2007, 27A(6):1111-1117 |