[1] Andreu F, Mazón J M, Segura de León S, Toledo J. Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions. Adv Math Sci Appl, 1997, 7(1):183-213 [2] Andreu F, Mazón J M, Segura de León S, Toledo J. Existence and uniqueness for a degenerate parabolic equation with L1-data. Trans Amer Math Soc, 1999, 351(1):285-306 [3] Artola M. Sur une classe de problèmes paraboliques quasi-linéaires. Boll Un Mat Ital B (6), 1986, 5(1):51-70 [4] Bénilan P, Boccardo L, Gallouët T, Gariepy R, Pierre M, Vázquez J L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann Scuola Norm Sup Pisa Cl Sci (4), 1995, 22(2):241-273 [5] Blanchard D, Désir F, Guibé O. Quasi-linear degenerate elliptic problems with L1 data. Nonlinear Anal, 2005, 60(3):557-587 [6] Boccardo L, Gallouët T. On some nonlinear elliptic and parabolic equations involving measure data. J Funct Anal, 1989, 87:149-169 [7] Boccardo L, Gallouët T, Murat F. Unicité de la solution de certaines équations elliptiques non linéaires. C R Acad Sci Paris Sér I Math, 1992, 315(11):1159-1164 [8] Bonzi B K, Ouaro S, Zongo F D Y. Entropy solutions to nonlinear elliptic anisotropic problem with Robin boundary condition. Matematiche (Catania), 2013, 68(2):53-76 [9] Cabarrubias B, Donato P. Existence and uniqueness for a quasilinear elliptic problem with nonlinear Robin conditions. Carpathian J Math, 2011, 27(2):173-184 [10] Cabarrubias B, Donato P. Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary conditions. Appl Anal, 2012, 91(6):1111-1127 [11] Carrillo J, Chipot M. On some nonlinear elliptic equations involving derivatives of the nonlinearity. Proc Roy Soc Edinburgh Sect A, 1985, 100(3/4):281-294 [12] Chipot M, Michaille G. Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities. Ann Scuola Norm Sup Pisa Cl Sci (4), 1989, 16(1):137-166 [13] Dal Maso G, Murat F, Orsina L, Prignet A. Renormalized solutions of elliptic equations with general measure data. Ann Scuola Norm Sup Pisa Cl Sci (4), 1999, 28(4):741-808 [14] Dall'Aglio A. Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann Mat Pura Appl (4), 1996, 170:207-240 [15] Di Nardo R, Feo F, Guibé O. Uniqueness result for nonlinear anisotropic elliptic equations. Adv Differ Equ, 2013, 18(5/6):433-458 [16] DiPerna R -J, Lions P -L. On the Cauchy problem for Boltzmann equations:global existence and weak stability. Ann Math, 1989, 130(1):321-366 [17] Droniou J. Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method. Adv Differ Equ, 2000, 5(10/12):1341-1396 [18] Guibé O. Uniqueness of the renormalized solution to a class of nonlinear elliptic equations//On the Notions of Solution to Nonlinear Elliptic Problems:Results and Developments. volume 23 of Quad Mat, Dept Math, Seconda Univ Napoli, Caserta, 2008:255-282 [19] Lions P -L, Murat F. Sur les solutions renormalisées d'équations elliptiques. (manuscript) [20] Murat F. Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris VI, 1993. Cours à l'Université de Séville [21] Ouaro S, Ouedraogo A. Entropy solution to an elliptic problem with nonlinear boundary conditions. An Univ Craiova Ser Mat Inform, 2012, 39(2):148-181 [22] Porretta A. Uniqueness of solutions for some nonlinear Dirichlet problems. Nonl Differ Equ Appl, 2004, 11(4):407-430 [23] Sbihi K, Wittbold P. Entropy solution of a quasilinear elliptic problem with nonlinear boundary condition. Commun Appl Anal, 2007, 11(2):299-325 [24] Serrin J. Pathological solution of elliptic differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1964, 18:385-387 |