[1] Amrouche C, Cioranescu D. On a class of fluids of grade 3. Int J Non-Linear Mech, 1997, 32:73-88
[2] Busuioc A V, Iftimie D. Global existence and uniqueness of solutions for the equations of third grade fluids. Int J Non-Linear Mech, 2004, 39:1-12
[3] Busuioc A V, Iftimie D, Paicu M. On steady third grade fluids equations. Nonlinearity, 2008, 21:1621-1635
[4] Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam:North-Holland, 1992
[5] Bloom F. Lower semicontinuity of the attractors of non-Newtonian fluids. Dynam Syst Appl, 1995, 4:567-579
[6] Bellout H, Bloom F. Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow. Cham:Birkhäuser/Springer, 2014
[7] Chai X J, et al. Large time behavior for a class of magnetohydrodynamic flow of a third grade fluid. accepted
[8] Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI:Amer Math Soc, 2002
[9] Carvalho A, Langa J, Robinson J C. Attractors for Infinite Dimensional Non-Autonomous Dynamical Systems. New York:Springer, 2013
[10] Cheskidov A, Lu S S. Uniform global attractors for the nonautonomous 3D Navier-Stokes equations. Adv Math, 2014, 267:277-306
[11] Chepyzhov V V, Titi E S, Vishik M I. On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system. Discrete Contin Dyn Syst, 2007, 17:481-500
[12] Fosdick R L, Rajagopal K R. Thermodynamics and stability of fluids of third grade. Proc R Soc London Ser A, 1980, 369:351-377
[13] Foias C, Holm D D, Titi E S. The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J Dynam Differ Equ, 2002, 14:1-35
[14] Guo C X, Guo B L. The convergence of non-Newtonian fluids to Navier-Stokes equations. J Math Anal Appl, 2009, 357:468-478
[15] Haraux A. Systemes Dynamiques Dissipatifs et Applications. Paris:Masson, 1991
[16] Hamza M, Paicu M. Global existence and uniqueness result of a class of third grade fluids equations. Nonlinearity, 2007, 20:1095-1114
[17] Ilyin A A, Titi E S. Attractors for the two dimensional Navier-Stokes-α model:an α-dependence study. J Dynam Differ Equ, 2003, 15:751-778
[18] Kloeden P E, Rasmussen M. Nonautonomous Cynamical Systems. Mathematical Surveys and Monographs, 176. Providence, RI:American Mathematical Society, 2011
[19] Ladyzhenskaya O A. New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Trudy Mat Inst Steklov, 1967, 102:85-104
[20] Lu S S, Wu H Q, Zhong C K. Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces. Discrete Contin Dyn Syst, 2005, 13:701-719
[21] Lu S S. Attractors fo nonautonomous 2D Navier-Stokes equation with less regular normal forces. J Differ Equ, 2006, 230:196-212
[22] Lu S S. Attractors for nonautonomous reaction-diffusion system with symbol without strong translation compactness. Asymp Anal, 2007, 54:197-210
[23] Lions J L. Quelques Méthodes de Résolution des Problèmes aus Limites Non Linéarires. Paris:Dunod, 1969
[24] Ladyzhenskaya O A. Mathematical Problems of the Dynamics of a Viscous Incompressible Liquid. Moscow:Nauka, 1970
[25] Paicu M. Global existence in the energy space of the solutions of a non-Newtonian fluid. Physica D, 2008, 237:1676-1686
[26] Paicu M, Raugel G, Rekalo A. Regularity of the global attractor and finite-dimensional behavior for the second grade fluid equations. J Differ Equ, 2012, 252:3695-3751
[27] Qin Y M, Yang X G, Liu X. Pullback attractors for the non-autonomous Benjiamin-Bona-Mahony equations in H2. Acta Math Sci, 2012, 32B:1338-1348
[28] Rivlin R S, Ericksen J L. Stress-deformation relations for isotropic materials. J Ration Mech Anal, 1955, 4:323-425
[29] Robinson J C. Infinite-dimensional dynamical systems//An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge:Cambridge University Press, 2001
[30] Sequeira A, Videman J. Global existence of classical solutions for the equations of third grade fluids. J Math Phys Sci, 1995, 29:47-69
[31] Simon J. Compact sets in the space Lp(0, T; B). Ann Mat Pura Appl, 1987, 146:65-96
[32] Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, 1979
[33] Temam R. Infinite-dimensional Dynamical Systems in Mechanics and Ahysics. New York:Springer, 1997
[34] Vishik M I, Titi E S, Chepyzhov V V. On convergence of trajectory attractors of the 3D Navier-Stokes-α model as α approaches 0. Sbornik Math, 2007, 198:1703-1736
[35] Yue G C. Zhong C K, On the convergence of the uniform attractor of 2D NS-α model to the uniform attractor of 2D NS system. J Comput Appl Math, 2010, 233:1879-1887
[36] Zelik S. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete Contin Dyn Syst Ser B, 2015, 20:781-810
[37] Zhao C D, Liang Y, Zhao M. Upper and lower bounds of time decay rate of solutions to a class of incompressible third grade fluid equations. Nonlinear Anal, 2014, 12:229-238
[38] Zhao C D, Duan J Q. Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system. Sci China Math, 2013, 56:253-265
[39] Zhao C D, Jia X L, Yang X B. Uniform attractor for nonautonomous imcompressible non-Newtonian fluid will a new class of external forces. Acta Math Sci, 2011, 31B:1803-1812 |