[1] Alexandre R, Desvillettes L, Villani C, Wennberg B. Entropy dissipation and long-range interactions. Arch Ration Mech Anal, 2000, 152:327-355
[2] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. The Boltzmann equation without angular cutoff in the whole space:I, Global existence for soft potential. J Funct Anal, 2012, 263(3):915-1010
[3] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198(1):39-123
[4] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. The Boltzmann equation without angular cutoff in the whole space:qualitative properties of solutions. Arch Ration Mech Anal, 2011, 202(2):599-661
[5] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. Global existence and full regularity of the Boltzmann equation without angular cutoff. Comm Math Phys, 2011, 304(2):513-581
[6] Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, 106. New York:Springer-Verlag, 1994
[7] Degond P, Lemou M. Dispersion relations for the linearized Fokker-Planck equation. Arch Ration Mech Anal, 1997, 138:137-167
[8] Desvillettes L, Dolbeault J. On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm Partial Differ Eqs, 1991, 16(2/3):451-489
[9] Duan R J. Dissipative property of the Vlasov-Maxwell-Boltzmann system with a uniform ionic background. SIAM J Math Anal, 2011, 43(6):2732-2757
[10] Duan R J. Global smooth dynamics of a fully ionized plasma with long-range collisions. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2014, 31(4):751-778
[11] Duan R J, Lei Y J, Yang T, Zhao H J. The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space for cutoff soft potentials. Preprint 2014. See also arXiv:1411.5150
[12] Duan R J, Liu S Q. The Vlasov-Poisson-Boltzmann system without angular cutoff. Comm Math Phys, 2013, 324(1):1-45
[13] Duan R J, Liu S Q, Yang T, Zhao H J. Stabilty of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6(1):159-204
[14] Duan R J, Strain R M. Optimal time decay of the Vlasov-Poisson-Boltzmann system in R3. Arch Ration Mech Anal, 2011, 199(1):291-328
[15] Duan R J, Strain R M. Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space. Comm Pure Appl Math, 2011, 24(11):1497-1546
[16] Duan R J, Ukai S, Yang T, Zhao H J. Optimal decay estimates on the linearized Boltzmann equation with time-dependent forces and their applications. Comm Math Phys, 2008, 277(1):189-236
[17] Duan R J, Yang T. Stability of the one species Vlasov-Poisson-Boltzmann system. SIAM J Math Anal, 2010, 41(6):2353-2387
[18] Duan R J, Yang, T, Zhao H J. The Vlasov-Poisson-Boltzmann system in the whole space:The hard potential case. J Differential Equations, 2012, 252(12):6356-6386
[19] Duan R J, Yang T, Zhao H J. The Vlasov-Poisson-Boltzmann system for soft potentials. Mathematical Models and Methods in Applied Sciences, 2013, 23(6):979-1028
[20] Duan R J, Yang T, Zhao H J. Global solutions to the Vlasov-Poisson-Landau system. Preprint 2011. See also arXiv:1112.3261
[21] Duan R J, Yang T, Zhu C J. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete Contin Dyn Syst, 2006, 16(1):253-277
[22] Duan R J, Zhang M, Zhu C J. L1 stability for the Vlasov-Poisson-Boltzmann system around vacuum. Math Models Methods Appl Sci, 2006, 16(9):1505-1526
[23] Fan Y Z, Lei Y J. Global solutions and time decay of the non-cutoff Vlasov-Maxwell-Boltzmann system in the whole space. J Stat Phy, 2015, 161(5):1059-1097
[24] Glassey, Robert T. The Cauchy Problem in Kinetic Theory. Philadelphia, PA:Society for Industrial and Applied Mathematics (SIAM), 1996
[25] Glassey R, Strauss W A. Decay of the linearized Boltzmann-Vlasov system. Transport Theory Statist Phys, 1999, 28(2):135-156
[26] Glassey R, Strauss W A. Perturbation of essential spectra of evolution operators and the Vlasov-PoissonBoltzmann system. Discrete Contin Dynam Systems, 1999, 5(3):457-472
[27] Grad H. Asymptotic theory of the Boltzmann equation Ⅱ//Laurmann J A. Rarefied Gas Dynamics. New York:Academic Press, 1963, 1:26-59
[28] Gressman P T, Strain R M. Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24(3):771-847
[29] Gressman P T, Strain R M. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv Math, 2011, 227(6):2349-2384
[30] Guo Y. The Vlasov-Poisson-Boltzmann system near vacuum. Comm Math Phys, 2001, 218(2):293-313
[31] Guo Y. The Landau equation in a periodic box. Comm Math Phys, 2002, 231:391-434
[32] Guo Y. Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch Ration Mech Anal, 2003, 169(4):305-353
[33] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53:1081-1094
[34] Guo Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm Pure Appl Math, 2002, 55(9):1104-1135
[35] Guo Y. The Vlasov-Poisson-Laudau system in a periodic box. J Amer Math Soc, 2012, 25:759-812
[36] Guo Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent Math, 2003, 153(3):593-630
[37] Guo Y, Jang J. Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Comm Math Phys, 2010, 299(2):469-501
[38] Guo Y, Strain R M. Momentum regularity and stability of the relativistic Vlasov-Maxwell-Boltzmann system. Commun Math Phys, 2012, 310:649-673
[39] Jang J. Vlasov-Maxwell-Boltzmann diffusive limit. Arch Ration Mech Anal, 2009, 194(2):531-584
[40] Lei Y J. The non-cutoff Boltzmann equation with potential force in the whole space. Acta Mathematica Scientia, 2014, 34B(5):1519-1539
[41] Lei Y J, Wan L. The Boltzmann equation with frictional force for soft potentials in the whole space. J Differential Equations, 2015, 258(10):3491-3534
[42] Lei Y J, Wan L, Zhao H J. The Vlasov-Poisson-Landau system with a uniform ionic background and algebraic decay initial perturbation. Bull Inst Math Acad Sin (NS), 2015, 10(3):311-347
[43] Lei Y J, Xiong L J, Zhao H J. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space. Kinetic and Related Models, 2014, 7(3):551-590
[44] Lei Y J, Zhao H J. The Vlasov-Maxwell-Boltzmann system with a uniform ionic background near Maxwellians. Journal of Differential Equations, 2016, 260:2830-2897
[45] Lei Y J, Zhao H J. Negative Sobolev spaces and the two-species Vlasov-Maxwell-Landau system in the whole space. J Func Anal, 2014, 267:3710-3757
[46] Li H L, Yang, T, Zhong M Y. Spectrum analysis for the Vlasov-Poisson-Boltzmann system. Preprint 2014. arXiv:1402.3633
[47] Li H L, Yang T, Zhong M Y. Spectrum analysis for the Vlasov-Maxwell-Boltzmann system. SIAM J Math Anal, 2016, 48(1):595-669
[48] Li L. On the trend to equilibrium for the Vlasov-Poisson-Boltzmann equation. J Differential Equations, 244(6):1467-1501
[49] Lions P L. On kinetic equations. Proceedings of the International Congress of Mathematians, Vol I, Ⅱ (Kyoto, 1990), 1173-1185. Tokyo:Math Soc Japan, 1991
[50] Lions P L. On Boltzmann and Landau equations. Phil Trans R Soc Lond A, 1994, 346:191-204
[51] Liu S Q, Yang T, Zhao H J. Compressible Navier-Stokes approximation to the Boltzmann equation. J Differential Equations, 2014, 256(11):3770-3816
[52] Liu S Q, Zhao H J. Optimal large-time decay of the relativistic Landau-Maxwell system. J Differential Equations, 2014, 256(2):832-857
[53] Liu T P, Yang T, Yu S H. Energy method for the Boltzmann equation. Physica D, 2004, 188:178-192
[54] Liu T P, Yu S H. Boltzmann equation:Micro-macro decompositions and positivity of shock profiles. Commun Math Phys, 2004, 246:133-179
[55] Mischler S. On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Comm Math Phys, 2000, 210:447-466
[56] Strain R M. The Vlasov-Maxwell-Boltzmann system in the whole space. Comm Math Phys, 2006, 268(2):543-567
[57] Strain R M. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5(3):583-613
[58] Strain R M, Guo Y. Exponential decay for soft potentials near Maxwellian. Arch Ration Mech Anal, 2008, 187(2):287-339
[59] Strain R M, Zhu K Y. The Vlasov-Poisson-Landau System in R3 x. Arch Ration Mech Anal, 2013, 210(2):615-671
[60] Ukai S. Solutions of the Boltzmann equation. Patterns and waves. North-Holland and Kinokuniya:Stud Math Appl, 1986, 18:37-96
[61] Villani C. A review of mathematical topics in collisional kinetic theory. North-Holland, Amsterdam, Handbook of Mathematical Fluid Dynamics, 2002, 1:71-305
[62] Wang Y J. Golobal solution and time decay of the Vlasov-Poisson-Landau System in Rx3. SIAM J Math Anal, 2012, 44(5):3281-3323
[63] Wang Y J. Decay of the two-species Vlasov-Poisson-Boltzmann system. J Differential Equations, 2013, 254(5):2304-2340
[64] Wang Y J. The two-species Vlasov-Maxwell-Landau system in R3. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2014, 32(5):1099-1123
[65] Xiao Q H, Xiong L J, Zhao H J. The Vlasov-Posson-Boltzmann system without angular cutoff for hard potential. Science China Mathematics, 2014, 57:515-540
[66] Xiao Q H, Xiong L J, Zhao H J. The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential. J Differential Equations, 2013, 255:1196-1232
[67] Xiao Q H, Xiong L J, Zhao H J. The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials. arXiv:1403.2584v1
[68] Yang T, Yu H J. Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system. Comm Math Phys, 2011, 301:319-355
[69] Yang T, Yu H J, Zhao H J. Cauchy problem for the Vlasov-Poisson-Boltzmann system. Arch Rational Mech Anal, 2006, 182(3):415-470
[70] Yang T, Zhao H J. Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Comm Math Phys, 2006, 268(3):569-605
[71] Zhang M. Stability of the Vlasov-Poisson-Boltzmann system in R3. J Differential Equations, 2009, 247(7):2027-2073 |