[1] Borovskii A V, Galkin A L. Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP, 1993, 77:562-573
[2] Aouaoui S. Multiplicity of solutions for quasilinear elliptic equations in RN. J Math Anal Appl, 2010, 370:639-648
[3] Bartsch T, Pankov A, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Comm Contemp Math, 2001, 4:549-569
[4] do O J M, Severo U. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Comm Pure Appl Anal, 2009, 8:621-644
[5] Canino A, Degiovanni M. Nonsmooth critical point theory and quasilinear elliptic equations//Granas A, Frigon M, Sabidussi G, eds. Topological Methods in Differential Equations and Inclusions, Montreal, 1994, NATO ASI Series. Dordrecht:Kluwer Academic Publishers, 1995:1-50
[6] Corvellec J N, Degiovanni M, Marzocchi M. Deformation properties for continuous functionals and critical point theory. Topol Methods Nonl Anal, 1993, 1:151-171
[7] Degiovanni M, Marzocchi M. A critical point theory for nonsmooth functional. Ann Mat Pura Appl, 1994, 167(4):73-100
[8] Arcoya D, Boccardo L. Critical points for multiple integrals of the calculus of variations. Arch Rational Meth Anal, 1996, 134:249-274
[9] Arcoya D, Boccardo L, Orsina L. Existence of critical points for some noncoercive functionals. Ann I H Poincaré-AN, 2001, 18(4):437-457
[10] Arioli G, Gazzola F. Quasilinear elliptic equations at critical growth. NoDEA Nonl Eiffer Equ Appl, 1998, 5:83-97
[11] Canino A. Multiplicity of solutions for quasilinear elliptic equations. Topol Methods Nonl Anal, 1995, 6:357-370
[12] Shen Y. Nontrivial solution for a class of quasilinear equation with natural growth. Acta Math Sinica, Chinese Series, 2003, 46:683-690
[13] Li Z, Shen Y, Yao Y. Nontrivial solutions for quasilinear elliptic equations with natural growth. Acta Math Sinica, Chinese Series, 2009, 52:785-798
[14] Shen Y, Li Z, Wang Y. Sign-changing critical points for noncoercive functionals. Topol Methods Nonl Anal, 2014, 43:373-384
[15] Squassina M. Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems. Electronic Journal of Differential Equations, Monograph 7, 2006
[16] Abdellaoui B, Boccardo L, Peral I, et al. Quasilinear elliptic equations with natural growth. Differ Integr Equ, 2007, 20:1005-1020
[17] Boccardo L, Spagnolo S. Positive solutions for some quasilinear elliptic equations with natural growths. Rend Mat Acc Lincei, 2000, 11:31-39
[18] Li Z. Existence of nontrivial solutions for quasilinear elliptic equations at critical growth. Appl Math Comput, 2011, 218:76-87
[19] Pellacci B, Squassina M. Unbounded critical points for a class of lower semicontinuous functionals. J Differ Equ, 2004, 201:25-62
[20] Arioli G, Gazzola F. On a quasilinear elliptic differential equation in unbounded domains. Rend Istit Mat Univ, Trieste, 1998, 30:113-128
[21] Conti M, Gazzola F. Positive entire solutions of quasilinear elliptic problems via nonsmooth critical point theory. Topol Methods Nonl Anal, 1996, 8:275-294
[22] Gazzola F. Positive solutions of critical quasilinear elliptic problems in general domains. Abstr Appl Anal, 1998, 3(1/2):65-84
[23] Liu J Q, Wang Z Q, Guo Y X. Multibump solutions for quasilinear elliptic equations. J Funct Anal, 2012, 262:4040-4102
[24] Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schródinger. Nonl Anal TMA, 2013, 80:194-201
[25] Li Z, Shen Y, Zhang Y. An application of nonsmooth critical point theory. Topol Methods Nonl Anal, 2010, 35:203-219
[26] Boccardo L, Murat F. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonl Anal TMA, 1992, 19:581-597
[27] Pucci P, Serrin J. A general variational identity. Indiana Univ Math J, 1986, 35(3):681-703
[28] Degiovanni M, Musesti A, Squassina M. On the regularity of solutions in the Pucci-Serrin identity. Calc Var Partial Differential Equations, 2003, 18:317-334 |