[1] Natterer F. The Mathematics of Computerized Tomography. New York: John Wiley and Sons, 1986
[2] Novikov R G. An inversion formula for the attenuated X-ray transform. Ark Mat, 2002, 40: 145-167
[3] Natterer F. Inversion of the attenuated Radon transform. Inverse Problems, 2001, 17: 113-119
[4] Lu J K. Boundary value problems for analytic functions. Singapore: World Scientific, 1993
[5] You J S. Noise analysis and treatment for SPECT imaging via an FBP algorithm with classical filters. Technical Report 2005 IRIS Lab, Dept of Radiology, State University of New York at Stony Brook
[6] Tretiak O J, Metz C. The exponential Radon transform. SIAM J Appl Math, 1980, 39: 341-354
[7] Wang J P. Inversion and property characterization on generalized transform of Radon type. Acta Mathe- matica Scientia (In Chinese), 2011, 31(3): 636-643
[8] Wang J P, Du J Y. A note on singular value decomposition for Radon transform in Rn. Acta Mathematica Scientia, 2002, 22B(3): 311-318
[9] Shi T T, Wang J P. Reconstruction of the attenuated Radon transform in -scheme short-scan SPECT. Acta Mathematica Scientia, 2013, 33B(6): 1615-1626
[10] Hazou I, Solmon D. Inversion of the exponential Radon transform I. Analysis. Math Meth Appl Sci, 1988, 10: 561-574
[11] Rullgard H. An explicit inversion formula for the exponential Radon transform using data from 180 degrees. Ark Mat, 2004, 42: 353-362
[12] Kunyansky L A. A new SPECT reconstruction algorithm based on the Novikov's explicit inversion formula. Inverse Problems, 2001, 17: 293-306
[13] Boman J, Stromberg J O. Novikov's inversion formula for the attenuated Radon transform -A new approach. J Geo Anal, 2004, 14: 185-198
[14] You J S. The attenuated Radon transform with complex coefficients. Inverse Problems, 2007, 23: 1963-1971
[15] Arzubov E V, Bukhgeim A L and Kazantsev S G. Two dimensional tomography problem and the theory of A-analytic functions. Siberian Adv Math, 1998, 8: 1-20
[16] Ljunggren S. A simple graphical representation of Fourier-based imaging methods. J Magn Reson 1983, 54: 338-43 |