[1] Bakry D, ´Emery M. Diffusion hypercontractivitives//S´eminaire de Probabilit´es XIX, 1983/1984. Lecture Notes in Math, Vol 1123. Berlin: Springer-Verlag, 1985: 177–206
[2] Chen Li, Chen Wenyi. Gradient estimates for positive smooth f-harmonic functions. Acta Math Sci, 2010, 30B(5): 1614–1618
[3] Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics 3. Science Press and American Mathematical Society, 2006
[4] Huang Guangyue, Ma Bingqing. Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch Math, 2010, 94(3): 265–275
[5] Li P, Yau S T. On the parabolic kernel of the Schr¨odinger operator. Acta Math, 1986, 156: 153–201
[6] Li Xiangdong. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J Math Pures Appl, 2005, 84(9): 1295–1361
[7] Li Xiangdong. Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature. Math Ann, 2012, 353(2): 403–437
[8] Li Xiangdong. Perelman’sW-entropy for the Forkker-Plank equation over complete Riemannian manifolds. Bull Sci Math, 2001, 125: 871–882
[9] Kotschwar B, Ni L. Gradient estimate for p-harmonic functions, 1/H flow and an entropy formula. Ann Sci Éc Norm Sup´er, 2009, 42(4): 1–36
[10] Munteanu O, Wang Jiaping. Smooth metric measure spaces with non-negative curvature. Comm Anal Geom, 2011, 19(3): 451–486
[11] Munteanu O, Wang Jiaping. Analysis of weighted Laplacian and applications to Ricci solitons. Comm Anal Geom, 2012, 20(1): 55–94
[12] Ni Lei. Monotonicity and Li-Yau-Hamilton inequalities//Surv Differ Geom 12: Geometric flows. International Press, 2008: 251–301
[13] Ni Lei. The entropy formula for linear heat equation. J Geom Anal, 2004, 14: 87–100
[14] Perelman G. The entropy formula for the Ricci flow and its geometric applications. http://arXiv.org/abs/maths0211159
[15] Wei Guofang, Wylie Will. Comparison geometry for the Bakry-Émery Ricci tensor. J Differ Geom, 2009, 83(2): 377–405 |