[1] Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. Beijing: Springer-Verlag & Beijing World Publishing Corporation, 1999
[2] Tuominen P, Tweedie R L. Subgeometric rates of convergence of f-ergodic Markov chains. Adv Appl Proby, 1994, 26: 775–798
[3] Jarner S F, Roberts G. Polynomial convergence rates of Markov chains. Ann Appl Prob, 2002, 12(1): 224–247
[4] Jarner S F, Tweedie R L. Necessary condition for geometric and polynomial ergodicity of random walk-type Markov chain. Bernoulli, 2003, 9(4): 559–578
[5] Douc R, Fort G, Moulines E and Soulier P. Practical drift conditions for subgeomertic rates of convergence. Ann Appl Prob, 2004, 14(3): 1353–1377
[6] Hou Z T, Liu Y Y. Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues. J Appl Prob, 2004, 41(3): 778–790
[7] Hou Z T, Li, X H. Ergodicity of quasi-birth and death process (I). Acta Math Sin English Ser, 2007, 23(2): 201–208
[8] Hou Z T, Li X H. Ergodicity of quasi-birth and death process (II). Chinese Ann Math Series A, 2005, 26(2): 181–192
[9] Li Q L, Zhao Y Q. Heavy-tailed asymptotics of stationary probability vectors of Markov chains of GI/G/1 type. Adv Appl Prob, 2005, 37(2): 482–509
[10] Li Q L, Zhao Y Q. Light-tailed asymptotics of stationary probability vector of Markov chains of GI/G/1 type. Adv Appl Prob, 2005, 37(4): 1075–1093
[11] Hou Z T, et al. Transient distribution of the length of GI/G/n queueing systems. J Stoch Anal Appl, 2003, 21(3): 567–592
[12] Li X H, Hou Z T. Ergodicity of the Ek/G/1 queueing system. Acta Math Sci, 2008, 28A(2): 359–366
[13] Liu Y Y, Hou Z T. Exponential and strong ergodicity for Markov processes with an application to queues. Chinese Ann Math Series B, 2008, 29(2): 199–206
[14] Liu Y Y, Hou Z T. Several types of ergodicity for M/G/1-type Markov chains and Markov processes. J Appl Prob, 2006, 43(1): 141–158
[15] Mao Y H. Algebraic convergence for discrete-time ergodic Markov chains. Chinese Science Series A, 2003, 46(5): 621–630
[16] Mao Y H. Ergodic degrees for continuous-time Markov chains. Science in China Series A, 2004, 47(5): 161–174
[17] Whitt W. The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distribu-tion. Queueing Systems, 2000, 36: 71–87
[18] Kempa W M. Some results for the actual waiting time in batch arrival queueing systems. Stochastic Models, 2010, 26(3): 335–356. |