数学物理学报(英文版) ›› 2011, Vol. 31 ›› Issue (3): 1103-1112.doi: 10.1016/S0252-9602(11)60301-9

• 论文 • 上一篇    下一篇

THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN

夏卫锋|褚玉明   

  1. School of Teacher Education, Huzhou Teachers College, Huzhou 313000, China; Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
  • 收稿日期:2008-11-10 修回日期:2009-11-25 出版日期:2011-05-20 发布日期:2011-05-20
  • 基金资助:

    Supported by the  NSFC (11071069), the NSF of Zhejiang Province (D7080080 and Y7080185), and the Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924).

THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN

 XIA Wei-Feng, CHU Yu-Ming   

  1. School of Teacher Education, Huzhou Teachers College, Huzhou 313000, China; Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
  • Received:2008-11-10 Revised:2009-11-25 Online:2011-05-20 Published:2011-05-20
  • Supported by:

    Supported by the  NSFC (11071069), the NSF of Zhejiang Province (D7080080 and Y7080185), and the Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924).

摘要:

We prove that the Gini mean values S(a, b; x, y) are Schur harmonic convex with respect to (x, y)∈ (0, ∞)×(0,∞) if and only if (a, b)∈{(a,b):a≥0, ab,a+b+1≥0}∪{(a, b):b≥0, ba, a+b+1≥0} and Schur harmonic concave with respect to (x, y)∈(0, ∞)×(0, ∞) if and only if (a, b)∈{(a, b):a≤0, b≤0, a+b+1≤0}.

关键词: Gini mean values, Schur convex, Schur harmonic convex

Abstract:

We prove that the Gini mean values S(a, b; x, y) are Schur harmonic convex with respect to (x, y)∈ (0, ∞)×(0,∞) if and only if (a, b)∈{(a,b):a≥0, ab,a+b+1≥0}∪{(a, b):b≥0, ba, a+b+1≥0} and Schur harmonic concave with respect to (x, y)∈(0, ∞)×(0, ∞) if and only if (a, b)∈{(a, b):a≤0, b≤0, a+b+1≤0}.

Key words: Gini mean values, Schur convex, Schur harmonic convex

中图分类号: 

  • 26B25