数学物理学报(英文版) ›› 2011, Vol. 31 ›› Issue (1): 141-158.doi: 10.1016/S0252-9602(11)60216-6

• 论文 • 上一篇    下一篇

GABOR ANALYSIS OF THE SPACES {\boldmath M( p, q w) ({Rd) AND S( p, q, r, w, ω) (Rd)

Ay¸se Sandik¸ci A. Turan G¨urkanli   

  1. Department of Mathematics, Faculty of Arts and Sciences, Ondokuz May\i s University, Kurupelit, Samsun, 55139, Turkey
  • 收稿日期:2007-09-17 修回日期:2008-12-25 出版日期:2011-01-20 发布日期:2011-01-20

GABOR ANALYSIS OF THE SPACES {\boldmath M( p, q w) ({Rd) AND S( p, q, r, w, ω) (Rd)

Ay¸se Sandik¸ci A. Turan G¨urkanli   

  1. Department of Mathematics, Faculty of Arts and Sciences, Ondokuz May\i s University, Kurupelit, Samsun, 55139, Turkey
  • Received:2007-09-17 Revised:2008-12-25 Online:2011-01-20 Published:2011-01-20

摘要:

Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define
the space M( p, q, w) ( Rd) to be the subspace of tempered distributions f ∈(Rd) such that the Gabor transform Vg(f) of f is in the weighted Lorentz space L( p, q, wdμ) (R2d) . We endow this space with a suitable norm and show that it becomes a Banach space and invariant under time frequence shifts for 1≤p, q≤∞. We also investigate the embeddings between these spaces and the dual space of  M( p, q, w) (Rd) . Later we define the space S( p, q, r, wω)(Rd) for 1<p<∞, 1≤q ≤∞. We endow it with a sum norm and show that it becomes a Banach convolution algebra. We also discuss some properties of S( p, q, r, wω) (Rd) . At the end of this article, we characterize the multipliers of
the spaces M( p, q, w) (Rd)  and S( p, q, r, wω) ( Rd) .

关键词: Gabor transform, weigted Lorentz space, multiplier

Abstract:

Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define
the space M( p, q, w) ( Rd) to be the subspace of tempered distributions f ∈(Rd) such that the Gabor transform Vg(f) of f is in the weighted Lorentz space L( p, q, wdμ) (R2d) . We endow this space with a suitable norm and show that it becomes a Banach space and invariant under time frequence shifts for 1≤p, q≤∞. We also investigate the embeddings between these spaces and the dual space of  M( p, q, w) (Rd) . Later we define the space S( p, q, r, wω)(Rd) for 1<p<∞, 1≤q ≤∞. We endow it with a sum norm and show that it becomes a Banach convolution algebra. We also discuss some properties of S( p, q, r, wω) (Rd) . At the end of this article, we characterize the multipliers of
the spaces M( p, q, w) (Rd)  and S( p, q, r, wω) ( Rd) .

Key words: Gabor transform, weigted Lorentz space, multiplier

中图分类号: 

  • 43A15