[1] Ali G, Bini D, Rionero S. Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J Math Anal, 2003, 32: 572--587
[2] Anile A M. An extended thermodynamic framework for the hydrodynamic modeling of semiconductors//Marcati P, et al eds. Mathematical Problem in Semiconductors Physics. Pitman Research Notes In Mathematics Series Vol 340. Longman, 1995: 3--41
[3] Ben Abdallah N, Degond P. On a hierarchy of macroscopic models for semiconductor. J Math Phys, 1996, 37: 3333--3383
[4] Ben Abdallah N, Degond P, Génieys S. An energy-transport model for semiconductors derived from the Boltzmann equation. J Stat Phys, 1996, 84: 205--231
[5] Blölekjaer K. Transport equations for electrons in two-valley semiconductors. IEEE Trans Electron Device, 1970, 17: 38--47
[6] Chen L, Hsiao L. The solution of Lyumiks energy transport model in semiconductor science. Math Meth Appl Sci, 2003, 26: 1421--1433
[7] Chen L, Hsiao L, Li Y. Large time behavior and energy relaxation time limit of the solutions to an energy transport model in semiconductors. J Math Anal Appl, 2005, 312: 596--619
[8] Chen L, Hsiao L, Li Y. Global existence and asymptotic behavior to the solutions of 1-D Lyumkis energy transport model for semiconductors. Quart Appl Math, 2004, 62(2): 337--358
[9] Degond P. Mathematical modelling of microelectronics semiconductor devices//Proceedings of the Morningside Mathematical Center, Beijng. AMS/IP Studies in Advanced Mathematics. AMS and Internatinal Press, 2000: 77--109
[10] Degond P, Génieys S, Jüngel A. A steady-state system in nonequilibrium thermodynamics including thermal and electrical effects. Math Meth Appl Sci, 1998, 21: 1399--1413
[11] Degond P, Génieys S, Jüngel A. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J Math Pures Appl, 1997, 76: 991--1015
[12] Génieys S. Energy transport model for a non degenerate semiconductor. Convergence of the Hilbert expansion in the linearized case. Asympt Anal, 1998, 17: 279--308
[13] Gasser I, Natalini R. The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors. Quart Appl Math, 1999, 57(2): 269--282
[14] Ju Q C, Li Y. Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Math Sci, 2004, 24B(3): 434--442
[15] Jüngel A. Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermodynamics.
Nonlin Anal, 2000, 41: 669--688
[16] Jüngel A. Quasi-hydrodynamic Semiconductor Equations. Basel, Boston, Berlin: Birkhäuser, 2001
[17] Ladyzhenskaya O A. Solonnikov V A, Ural'tseva N N. Linear and Quasilinear Equations of Parabolic Type.
Providence R I: American Mathematical Society, 1968
[18] Li Y. Relaxation time limits problem for hydrodynamic models in semiconductor science. Acta Math Sci, 2007, 27B(2): 437--448
[19] Li Y, Chen L. Global existence and asymptotic behavior of the solution to 1-D energy transport model for semiconductors. J Partial Diff Eqs, 2002, 15(4): 81--95
[20] Markowich P A, Ringhofer C, Schmeiser C. Semiconductors Equations. Vienna, New York: Springer-Verlag, 1990
[21] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67--104
|