摘要:
The existence of at least two positive solutions is presented for the singular second-order boundary value problem
{(p(t)/1 (p(t)x’(t))′+Φ(t)f(t, x(t), p(t)x′(t))=0, 0 <t <1,
limt→0 p(t)x′(t)=0, x(1)=0.
by using the fixed point index, where f may be singular at x=0 and px’=0.
中图分类号:
闫宝强. MULTIPLE POSITIVE SOLUTIONS BOUNDARY VALUE PROBLEMS FOR SUPERLINEAR SECOND ORDER SINGULAR WITH DERIVATIVE DEPENDENCE[J]. 数学物理学报(英文版), 2008, 28(4): 851-864.
Yan Baoqiang. MULTIPLE POSITIVE SOLUTIONS BOUNDARY VALUE PROBLEMS FOR SUPERLINEAR SECOND ORDER SINGULAR WITH DERIVATIVE DEPENDENCE[J]. Acta mathematica scientia,Series B, 2008, 28(4): 851-864.