数学物理学报(英文版) ›› 2017, Vol. 37 ›› Issue (3): 786-798.doi: 10.1016/S0252-9602(17)30037-1
崔宁, 陈宗煊
Ning CUI, Zong-Xuan CHEN
摘要:
In this article, we mainly devote to proving uniqueness results for entire functions sharing one small function CM with their shift and difference operator simultaneously. Let f(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and Δcnf(z) share 0 CM, then f(z + c) ≡ Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)(? 0) ∈ S(f) be periodic entire functions with period c and if f(z) -a(z), f(z + c) -a(z), Δcnf(z) -b(z) share 0 CM, then f(z + c) ≡ f(z).