[1] Aiena P, Triolo S. Fredholm spectra and Weyl type theorems for Drazin invertible operators. Mediterr J Math, 2016. doi:10.1007/s00009-016-0751-3
[2] Aiena P, Triolo S. Local spectral theory for Drazin invertible operators. J Math Anal Appl, 2016, 435:414-435
[3] Aiena P, Triolo S. Some perturbation results through localized SVEP. Acta Sci Math, 2016, 82:18-49
[4] Aiena P. Fredholm and local spectral theory with applications to multipliers. Dordrecht:Kluwer Academic Publishers, 2004
[5] Aiena P, Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250:435-448
[6] Aiena P, Pena P. Variation On Weyl's theorem. J Math Anal Appl, 2006, 324:566-579
[7] Aiena P, Biondi M T. Property (w) and perturbations. J Math Anal Appl, 2007, 336:683-692
[8] Aiena P, Biondi M T, Carpintero C. On Drazin Invertibility. Proc Amer Math Soc, 2008, 136:2839-2848
[9] Aiena P. Property (w) and perturbations II. J Math Anal Appl, 2008, 342:830-837
[10] Amouch M, Zguitti H. On the equivalence of Browder's and generalized Browder's theorem. Glasgow Math J, 2006, 48:179-185
[11] Amouch M. Generalized a-Weyl's theorem and the SVEP. Extracta Math, 2006, 21:51-65
[12] Amouch M.Weyl type theorems for operators satisfying the single-valued extension property. J Math Annal Appl, 2007, 326:1476-1484
[13] Amouch M, Berkani M. On the property (gw). Mediterr J Math, 2008, 5:373-380
[14] Bayart F, Matheron E. Dynamics of linear Operators. Cambridge tracts in mathematics, 2009
[15] Berkani M. On a class of quasi-Fredholm operators. Integral Equations Operator theory, 1999, 34:244-603
[16] Berkani M. B-Weyl spectrum and poles of the resolvant. J Math Anal Appl, 2002, 272:596-603
[17] Berkani M, Koliha J. Weyl type theorems for bounded linear operators. Acta Sci Math (Szeged), 2003, 69:359-376
[18] Berkani M. On the equivalence of Weyl and generalized Weyl theorem. Acta Mathematica Sinica (English series), 2007, 23:103-110
[19] Coburn L A. Wely's theorem for nonnormal operators. Michigan Math J, 1966, 13:285-288
[20] Duggal B P. Weyl's theorem and hypercyclic/supercyclic operators. J Math Anal Appl, 2007, 335:990-995
[21] El Bakkali A, Tajmouati A. Property (w) and Hypercyclic/Supercyclic operators. Int J Contemp Math Sciences, 2012, 7:1259-1268
[22] Herrero D A. Limits of Hypercyclic and Supercyclic Operators. J Funct Anal, 1991, 99:179-190
[23] Heuser H G. Functional Analysis. University of Karlsruhe, Federal Republic of Germany, 1982
[24] Laursen L, Neumann M M. An introduction to Local Spectral Theory. London Mathematical Society Monographs, 2000
[25] Matache V. Notes on hypercyclic operators. Acta Sci Mat (Szeged), 1993, 58:397-406
[26] Miller T L, Miller V G. Local spectral theory and orbits of operators. Proc Amer Math Soc, 1999, 127:1029-1037
[27] Kitai C. Invariant closed sets for linear operators. Ph.D Thesis. University of Toronto, 1982
[28] Koliha J. Isolated spectral points. Proc Amer Math Soc, 1996
[29] Rako?evi′c V. Operators obeying a a-weyl's theorem. Rev Roumaine Math Pures Appl, 1989, 34:915-147
[30] Read C. The invariant subspace problem for a class of Banach space operators 2. Hypercyclic operators. Israel J Math, 1988, 63:1-40
[31] Zguitti H. A note on generalized Weyl's theorem. J Math Anal Appl, 2006, 316:373-381 |