[1] Higham N J. Functions of Matrices:Theory and Computation. Philadelphia:SIAM, 2008
[2] Hua L K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Providence:AMS, 1963
[3] Mehta M L. Random Matrices. 3rd ed. Pure and Applied Mathematics (Amsterdam), Vol 142. Amsterdam: Elsevier/Academic Press, 2004
[4] Forrester P J. The spectrum edge of random matrix ensembles. Nucl Phys B, 1993, 402:709-728
[5] Forrester P J, Witte N S. The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble. Kyushu J Math, 2007, 61:457-526
[6] Goodman N R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann Math Statist, 1963, 34:152-177
[7] James A T. Distributions of matrix variates and latent roots derived from normal samples. Ann Math Statist, 1964, 35:475-501
[8] Tracy C A, Widom H. Fredholm determinants, diffrential equations and matrix models. Commun Math Phys, 1994, 163:33-72
[9] Jimbo M, Miwa T. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. Ⅱ. Physica D, 1981, 2:407-448
[10] Okamoto K. On the τ-function of the Painlevé equations. Physica D, 1981, 2:525-535
[11] Basor E, Chen Y. Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles. J Phys A:Math Theor, 2009, 42:035203(18pp)
[12] Perret A, Schehr G. Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices. Accepted for publication in Random Matrices:Theory Appl, 2015, 28pp
[13] Cosgrove C M. Chazy's second-degree Painlevé equations. J Phys A:Math Gen, 2006, 39:11955-11971
[14] Szegö G. Orthogonal Polynomials (American Mathematical Society Colloquium Publications). Vol 23. New York:AMS, 1939
[15] Chen Y, Ismail M. Ladder operators and differential equations for orthogonal polynomials. J Phys A:Math Gen, 1997, 30:7817-7829
[16] Chen Y, Ismail M. Jacobi polynomials from compatibility conditions. Proc Amer Math Soc, 2004, 133(2): 465-472
[17] Chen Y, Its A. Painlevé Ⅲ and a singular linear statistics in Hermitian random matrix ensembles, I. J Approx Theory, 2010, 162:270-297
[18] Magnus A P. Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J Comput Appl Math, 1995, 57:215-237
[19] Grammaticos B, Ramani A. Discrete Painlevé equations:an integrability paradigm. Phys Scr, 2014, 89: 038002(13pp)
[20] Tracy C A, Widom H. The distributions of random matrix theory and their applications//New Trends in Mathematical Physics. Netherlands:Springer, 2009:753-765
[21] Tracy C A, Widom H. Level-spacing distributions and the Airy kernel. Commun Math Phys, 1994, 159: 151-174
[22] Basor E, Chen Y, Ehrhardt T. Painlevé V and time-dependent Jacobi polynomials. J Phys A:Math Theor, 2010, 43:015204(25pp)
[23] Chen Y, Pruessner G. Orthogonal polynomials with discontinuous weights. J Phys A:Math Gen, 2005, 38: 191-198
[24] Whittaker E T, Watson G N. A Course of Modern Analysis. 4th ed. Cambridge University Press, 1927
[25] Forsyth A R. A Treatise on Differential Equations, sixth edition. New York:Dover Publications, Inc, 1956
[26] Basor E, Chen Y. Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory. Math Meth Appl Sci, 2014. DOI:10.1002/mma.3399
[27] Chen Y, McKay M R. Coulumb fluid, Painlevé transcendents, and the information theory of MIMO systems. IEEE Trans Inf Theory, 2012, 58(7):4594-4634
[28] Chen Y, Dai D. Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials. J Approx Theory, 2010, 162:2149-2167
[29] Cao M, Chen Y, Griffin J. Continuous and discrete Painlevé equations arising from the gap probability distribution of the finite n Gaussian Unitary Ensembles. J Stat Phys, 2014, 157:363-375 |